Digital Communications I: Modulation and Coding Course

Period 3-2007
Catharina Logothetis
Lecture 10

Last time, we talked about:

- Channel coding
- Linear block codes
- The error detection and correction capability
- Encoding and decoding
- Hamming codes
- Cyclic codes

Today, we are going to talk about:

- Another class of linear codes, known as Convolutional codes.
- We study the structure of the encoder.
- We study different ways for representing the encoder.

Convolutional codes

- Convolutional codes offer an approach to error control coding substantially different from that of block codes.
- A convolutional encoder:
- encodes the entire data stream, into a single codeword.
- does not need to segment the data stream into blocks of fixed size (Convolutional codes are often forced to block structure by periodic truncation).
- is a machine with memory.
- This fundamental difference in approach imparts a different nature to the design and evaluation of the code.
- Block codes are based on algebraic/combinatorial techniques.
- Convolutional codes are based on construction techniques.

Convolutional codes-cont'd

- A Convolutional code is specified by three parameters (n, k, K) or $(k / n, K)$ where
- $R_{c}=k / n$ is the coding rate, determining the number of data bits per coded bit.
- In practice, usually $k=1$ is chosen and we assume that from now on.
- K is the constraint length of the encoder a where the encoder has $K-1$ memory elements.
- There is different definitions in literatures for constraint length.

Block diagram of the DCS

A Rate $1 ⁄ 2$ Convolutional encoder

- Convolutional encoder (rate $1 / 2, \mathrm{~K}=3$)
- 3 shift-registers where the first one takes the incoming data bit and the rest, form the memory of the encoder.

Input data bits
m

A Rate $1 ⁄ 2$ Convolutional encoder

Message sequence: $\quad \mathbf{m}=(101)$

A Rate $1 ⁄ 2$ Convolutional encoder

Effective code rate

- Initialize the memory before encoding the first bit (allzero)
- Clear out the memory after encoding the last bit (allzero)
- Hence, a tail of zero-bits is appended to data bits.

- Effective code rate :
- L is the number of data bits and $k=1$ is assumed:

$$
R_{e f f}=\frac{L}{n(L+K-1)}<R_{c}
$$

Encoder representation

- Vector representation:

- We define n binary vector with K elements (one vector for each modulo-2 adder). The i:th element in each vector, is " 1 " if the i :th stage in the shift register is connected to the corresponding modulo-2 adder, and " 0 " otherwise.
- Example:

$$
\begin{aligned}
& \mathbf{g}_{1}=(111) \\
& \mathbf{g}_{2}=(101)
\end{aligned}
$$

Encoder representation - cont’d

- Impulse response representaiton:
- The response of encoder to a single "one" bit that goes through it.

Encoder representation - cont’d

- Polynomial representation:

- We define n generator polynomials, one for each modulo-2 adder. Each polynomial is of degree $K-1$ or less and describes the connection of the shift registers to the corresponding modulo-2 adder.
- Example:

$$
\begin{aligned}
& \mathbf{g}_{1}(X)=g_{0}^{(1)}+g_{1}^{(1)} \cdot X+g_{2}^{(1)} \cdot X^{2}=1+X+X^{2} \\
& \mathbf{g}_{2}(X)=g_{0}^{(2)}+g_{1}^{(2)} \cdot X+g_{2}^{(2)} \cdot X^{2}=1+X^{2}
\end{aligned}
$$

The output sequence is found as follows:
$\mathbf{U}(X)=\mathbf{m}(X) \mathbf{g}_{1}(X)$ interlaced with $\mathbf{m}(X) \mathbf{g}_{2}(X)$

Encoder representation -cont'd

In more details:

$$
\begin{aligned}
& \mathbf{m}(X) \mathbf{g}_{1}(X)=\left(1+X^{2}\right)\left(1+X+X^{2}\right)=1+X+X^{3}+X^{4} \\
& \mathbf{m}(X) \mathbf{g}_{2}(X)=\left(1+X^{2}\right)\left(1+X^{2}\right)=1+X^{4} \\
& \hline \mathbf{m}(X) \mathbf{g}_{1}(X)=1+X+0 . X^{2}+X^{3}+X^{4} \\
& \mathbf{m}(X) \mathbf{g}_{2}(X)=1+0 . X+0 . X^{2}+0 . X^{3}+X^{4}
\end{aligned}
$$

$$
\begin{array}{rlrcc}
\hline \mathbf{U}(X) & =(1,1)+ & (1,0) X+(0,0) X^{2}+(1,0) X^{3}+(1,1) X^{4} \\
\mathbf{U} & =11 & 10 & 00 & 10
\end{array} 11
$$

State diagram

- A finite-state machine only encounters a finite number of states.
- State of a machine: the smallest amount of information that, together with a current input to the machine, can predict the output of the machine.
- In a Convolutional encoder, the state is represented by the content of the memory.
- Hence, there are 2^{K-1} states.

State diagram - cont'd

- A state diagram is a way to represent the encoder.
- A state diagram contains all the states and all possible transitions between them.
- Only two transitions initiating from a state
- Only two transitions ending up in a state

State diagram - cont'd

Lecture 10

Trellis - cont'd

- Trellis diagram is an extension of the state diagram that shows the passage of time.
- Example of a section of trellis for the rate $1 / 2$ code

Trellis -cont'd

- A trellis diagram for the example code

Trellis - cont'd

