Digital Communications I: Modulation and Coding Course

> Period 3 - 2007 Catharina Logothetis Lecture 10

Last time, we talked about:

Channel coding

- Linear block codes
 - The error detection and correction capability
 - Encoding and decoding
 - Hamming codes
 - Cyclic codes

Today, we are going to talk about:

Another class of linear codes, known as Convolutional codes.

We study the structure of the encoder.

We study different ways for representing the encoder.

Convolutional codes

- Convolutional codes offer an approach to error control coding substantially different from that of block codes.
 - A convolutional encoder:
 - encodes the entire data stream, into a single codeword.
 - does not need to segment the data stream into blocks of fixed size (*Convolutional codes are often forced to block structure by periodic truncation*).
 - is a machine with memory.
- This fundamental difference in approach imparts a different nature to the design and evaluation of the code.
 - Block codes are based on algebraic/combinatorial techniques.
 - Convolutional codes are based on construction techniques.

Convolutional codes-cont'd

- A Convolutional code is specified by three parameters (n,k,K) or (k/n,K) where
 - R_c = k / n is the coding rate, determining the number of data bits per coded bit.
 - In practice, usually k=1 is chosen and we assume that from now on.
 - K is the constraint length of the encoder a where the encoder has K-1 memory elements.
 - There is different definitions in literatures for constraint length.

Block diagram of the DCS

A Rate 1/2 Convolutional encoder

- Convolutional encoder (rate ½, K=3)
 - Shift-registers where the first one takes the incoming data bit and the rest, form the memory of the encoder.

A Rate 1/2 Convolutional encoder

A Rate 1/2 Convolutional encoder

Effective code rate

- Initialize the memory before encoding the first bit (allzero)
- Clear out the memory after encoding the last bit (allzero)
 - Hence, a tail of zero-bits is appended to data bits.

- Effective code rate :
 - L is the number of data bits and k=1 is assumed:

$$R_{eff} = \frac{L}{n(L + K - 1)} < R_c$$

Encoder representation

Vector representation:

- We define n binary vector with K elements (one vector for each modulo-2 adder). The i:th element in each vector, is "1" if the i:th stage in the shift register is connected to the corresponding modulo-2 adder, and "0" otherwise.
 - Example:

Encoder representation – cont'd

Impulse response representation:

The response of encoder to a single "one" bit that goes through it.

Example:							Register	Branch word	
							<u>contents</u>	u_1	<i>u</i> ₂
Input sequence: $1 0 0$						100	1	1	
						010	1	0	
Output sequence : 11 10 11						_001	1	1	
Input m		Ou	tput						
1	11	10	11						
0	' 	00	00	00					
1	 		11	10	11				
Modulo-2 sum:	11	10	00	10	11	_			

Encoder representation – cont'd

Polynomial representation:

- We define n generator polynomials, one for each modulo-2 adder. Each polynomial is of degree *K-1* or less and describes the connection of the shift registers to the corresponding modulo-2 adder.
 - Example:

$$\mathbf{g}_{1}(X) = g_{0}^{(1)} + g_{1}^{(1)}.X + g_{2}^{(1)}.X^{2} = 1 + X + X^{2}$$
$$\mathbf{g}_{2}(X) = g_{0}^{(2)} + g_{1}^{(2)}.X + g_{2}^{(2)}.X^{2} = 1 + X^{2}$$

The output sequence is found as follows:

 $\mathbf{U}(X) = \mathbf{m}(X)\mathbf{g}_1(X)$ interlaced with $\mathbf{m}(X)\mathbf{g}_2(X)$

Encoder representation –cont'd

In more details:

 $\mathbf{m}(X)\mathbf{g}_{1}(X) = (1 + X^{2})(1 + X + X^{2}) = 1 + X + X^{3} + X^{4}$ $\mathbf{m}(X)\mathbf{g}_{2}(X) = (1 + X^{2})(1 + X^{2}) = 1 + X^{4}$ $\mathbf{m}(X)\mathbf{g}_{1}(X) = 1 + X + 0.X^{2} + X^{3} + X^{4}$ $\mathbf{m}(X)\mathbf{g}_{2}(X) = 1 + 0.X + 0.X^{2} + 0.X^{3} + X^{4}$ $\mathbf{U}(X) = (1,1) + (1,0)X + (0,0)X^{2} + (1,0)X^{3} + (1,1)X^{4}$ $\mathbf{U} = 11 \qquad 10 \qquad 00 \qquad 10 \qquad 11$

State diagram

- A finite-state machine only encounters a finite number of states.
- State of a machine: the smallest amount of information that, together with a current input to the machine, can predict the output of the machine.
- In a Convolutional encoder, the state is represented by the content of the memory.
- Hence, there are 2^{K-1} states.

State diagram – cont'd

- A state diagram is a way to represent the encoder.
- A state diagram contains all the states and all possible transitions between them.
- Only two transitions initiating from a state
- Only two transitions ending up in a state

State diagram – cont'd

Trellis – cont'd

- Trellis diagram is an extension of the state diagram that shows the passage of time.
 - Example of a section of trellis for the rate 1/2 code

Trellis -cont'd

A trellis diagram for the example code

Trellis – cont'd

