Tutorial No. 1

Period 3-2006

Topic: Signals and spectra

Exercise 1

Determine which, if any, of the following functions have the properties of autocorrelation functions. Justify your answer.

1. $x(\tau)= \begin{cases}1, & \text { for }-1 \leq \tau \leq 1 ; \\ 0, & \text { otherwise } .\end{cases}$
2. $x(\tau)=\delta(\tau)+\sin \left(2 \pi f_{0} \tau\right)$
3. $x(\tau)=\exp (|\tau|)$
4. $x(\tau)=1-|\tau|$ for $-1 \leq \tau \leq 1,0$ elsewhere

Exercise 2

Determine whether these signals are energy-type or power-type. In each case, find the energy or power-spectral density and also the energy or power content of the signal.

1. $x(t)=\exp (-\alpha t) u(t) \quad \alpha>0$
2. $x(t)=\operatorname{sinc}(t)$
3. $x(t)=\sum_{n=-\infty}^{+\infty} \Lambda(t-2 n)$
4. $x(t)=u(t)$

Exercise 3

The signal $Y(t)$ is generated by filtering the output of an Gaussian source with zero mean and unit variance through a filter with the impulse response given by
$h(t)=\operatorname{rect}\left(\frac{t-10^{-3}}{10-4}\right)$.
Find the value of the bandwidth of the output signal $Y(t)$ using the following bandwidth definitions:

1. Half-power bandwidth.
2. Noise equivalent bandwidth.
3. Null-to-null bandwidth.
4. 99% of power bandwidth.
5. Bandwidth beyond which the attenuation is 35 dB .
6. Absolute bandwidth.

Exercise 4

For each of the following processes, find the spectral density.

1. $X(t)=A \cos \left(2 \pi f_{0} t+\Theta\right)$, where A is a constant and Θ is a random variable uniformly distributed on $\left[0, \frac{\pi}{4}\right]$.
2. $X(t)=X+Y$, where X and Y are independent, X is uniform on $[-1,1]$ and Y is uniform on $[0,1]$.

Exercise 5

Let $\left\{A_{k}\right\}_{k=-\infty}^{+\infty}$ be a sequence of random variables with $E\left[A_{k}\right]=m$ and $E\left[A_{k} A_{j}\right]=$ $R_{A}(k-j)$. We further assume that $R_{A}(k-j)=R_{A}(j-k)$. Let $p(t)$ be any deterministic signal whose Fourier transform is $P(f)$, and define the random process
$X(t)=\sum_{k=-\infty}^{+\infty} A_{k} p(t-k T)$
where T is a constant.

1. Find $m_{X}(t)$.
2. Find $R_{X}(t+\tau, t)$.
3. Show that the process is cyclostationary with period T.
4. Show that
$\bar{R}_{X}(\tau)=\frac{1}{T} \int_{0}^{T} R_{X}(t+\tau, t) d t=\frac{1}{T} \sum_{-\infty}^{+\infty} R_{A}(n) R_{p}(\tau-n T)$
where $R_{p}(\tau)=p(\tau) \star p(-\tau)$ is the (deterministic) autocorrelation function of $p(t)$.
5. Show that the power spectral density of $X(t)$ is given by
$G_{X}(f)=\frac{|P(f)|^{2}}{T}\left[R_{A}(0)+2 \sum_{k=1}^{\infty} R_{A}(k) \cos (2 \pi k f T)\right]$.
