Exam Digital Communications I

16th of March, 14:00-19:00

Examiner: Anders Ahlén, 018-4713076

Allowed material:

- The textbook Digital Communications by Bernard Sklar
- Any calculator
- Mathematical handbook, β eta
- Swedish-English dictionary
- List of formulas written by Sorour Falahati

Preliminary grading intervals: grade $3=(23-32)$, grade $4=(33-42)$, grade $5=(43-50)$
Please write all your answers neatly and clearly and motivate your answers thoroughly except in Question 1 where only true or false is required.

Good Luck!

Question 1: (10p)
For each of the following sub-questions answer by true or false. No motivation is required. An incorrect answer gives 0 p .

1. (2p) A signal can be strictly limited in time and have limited absolute bandwidth at the same time.
2. (2p) Non-coherent demodulation always requires an accurate phase reference
3. (2p) The rate $1 / 2$ convolutional code with generator vectors $g_{1}=(110)$ and $g_{2}=(101)$ is catastrophic.
4. (2p) Let $E_{b} / N_{0}=10 d B$ and assume an AWGN channel. The bit error rate for coherently detected BPSK is then less than 4×10^{-6}.
5. (2p) Consider binary signaling over an AWGN channel. The probability of bit error of antipodal signaling is always one half of the probability of error for orthogonal signaling

Question 2: (10p)
Find the bit error probability for a digital communication system with a bit rate of $1 \mathrm{Mbit} / \mathrm{s}$. The received waveforms

$$
s_{1}=A \cos \left(\omega_{0} t\right) ; s_{2}=A \sin \left(\omega_{0} t\right) ; s_{3}=-A \cos \left(\omega_{0} t\right) ; s_{4}=-A \sin \left(\omega_{0} t\right)
$$

are coherently detected with matched filters. The value of A is $8 m V$ and the single sided noise power spectral density is $N_{0}=10^{-11} W / H z$. Furthermore, the signal power and energy per bit are normalized relative to a 1Ω load. Assume equiprobable and Gray coded symbols.

Design an MPSK-modulation/coding scheme that fulfills the following system requirements:

- The bandwidth must not exceed 4000 Hz
- The signal power to noise spectral density ratio $P / N_{0}=50 d B H z$
- The bit rate is $R_{b}=10 \mathrm{kHz}$
- The bit error rate $P_{B} \leq 10^{-5}$

Assume an AWGN channel, Nyquist signaling, and equiprobable Gray coded symbols. The symbol constellation consists of $M=2^{k}$ symbols where k is positive integer. The symbols are assumed to be evenly spaced on a circle with radius $\sqrt{E_{s}}$ where E_{s} is the symbol energy.
Hint: The provided tables of $Q(x)$ and BCH-codes may be used.

Question 4: (10p)
A convolutional code has generator vectors: $g_{1}=(1011) ; g_{2}=(1101) ; g_{3}=(1111)$.
Assume a binary symmetric channel with probability of error $p=2 \times 10^{-2}$.

1. (4p) Draw a state diagram for this code.
2. (6p) Calculate an upper bound for the probability of (decoded) bit error.

Hint: Use only dominating terms in the transfer function $T(D, N)$.
Question 5: (10p)
Let the sampled received signal in a digital communications channel subject to multi-path propagation be represented by

$$
x_{t}=u_{t}+0.7 u_{t-1}+n_{t}
$$

where the transmitted symbols $\left\{u_{t}\right\}$, and the noise $\left\{n_{t}\right\}$ are zero mean and mutually independent white sequences with $E u_{t}^{2}=\sigma_{u}^{2}$ and $E n_{t}^{2}=\sigma_{n}^{2}$.

1. (6p) Calculate the coefficients of the two tap linear equalizer

$$
\hat{u}_{t}=c_{0} x_{t}+c_{1} x_{t-1}
$$

by minimizing the mean square error (MSE), $E \varepsilon_{t}^{2}$, where $\varepsilon_{t}=u_{t}-\hat{u}_{t}$. Assume $\sigma_{u}^{2} / \sigma_{n}^{2}=10 d B$.
2. (4p) Calculate the MSE for the equalizer optimized in 1. above. Also find the optimal coefficients c_{0} and c_{1} for the case $\sigma_{u}^{2} / \sigma_{n}^{2}=\infty \mathrm{dB}$ (i.e. $\sigma_{n}^{2}=0$) and compare the two MSE results. What conclusions can you draw from this comparison? Would it be possible to construct an equalizer which attains a lower MSE? Motivate your answer clearly.

