INLÄMNINGSUPPGIFT 2 - DMI 2006

© Signaler och System,

Institutionen för teknikvetenskaper, Uppsala Universitet

Målsättning och förberedelser

Målet med denna inlämningsuppgift är att du ska få fördjupade kunskaper om hur man kan använda mönsterigenkäningsmetoder för att lösa praktiska problem med hjälp av PRTools. Efter avslutad uppgift ska du kunna utföra PCA och klustringsanalys på nya data samt analysera prestanda hos olika klassificerare och inlärningsalgoritmer.
Förberedelserna är samma som för inlämningsuppgift 1 dvs att ladda ned PRTools och skapa en egen katalog myfiles, se inlämningsuppgift 1.

Redovisning

Se inlämningsuppgift 1.
PRTools - EXERCISE II

1 PCA AND CLUSTERING

1.1 Basic PCA

Principal component analysis (PCA) is well suited for studying data in a matrix X that has been generated using the following lines of code:

B=randn(10,3); %Generate three 10-dimensional basis vectors

X=B*randn(3,100); %Generate one hundred 10-dimensional patterns

 %with 3 degrees of freedom

X=X'; %Make the examples equivalent to rows in X
(a) In what sense is PCA well suited for analyzing this data set?

(b) Generate and import the data set into PRTools and call the data set and perform a PCA using restricted to four eigenvectors using:
D=dataset(X) %Import data to datastructure

wPCA=pca(D,4) %Perform PCA – train the mapping

struct(wPCA) %Display mapping
This just defines the mapping (‘trains’ it using D) for finding the first four principal components. In PRTools, this mapping is implemented as a ‘affine’ mapping. An ‘affine’ mapping is defined as y=P*x+o where P is a matrix and o is an ‘offset’ vector.

(c) If an affine transformation is used to calculate the score values during PCA, how to express P and o in terms of the eigenvectors and the mean vector of the raw data?

(d) Compute the mean vector and the eigenvectors for the four largest eigenvalues in the data set D generated above and calculate P and o. Confirm that they agree with the corresponding fields wPCA.data.rot and wPCA.data.offset in the mapping wPCA. Hint: The eigenvectors may be computed using the function eig or the function svd.

(e) Generate three new examples from the same distribution as those in D and import them in a datastructure Dnew. Project the new examples onto the four eigenvectors using pcaScoresD=Dnew*wPCA;

Extract the projections in pcaScoresD as PcaScoresD_data=getdata(pcaScoresD)
What is the expected score value for the fourth eigenvector?

(f) Show that wPCA also can be obtained using the command

wUntrainedPCA4=pca([],4);
wPCAnew=D*wUntrainedPCA4

(g) The fraction of explained variance can be studied using a plot generated by the command

plot(pca(D,0))

Confirm that only three eigenvectors are needed to explain all variance.

1.2 Eigenfaces

The linear mappings used in subtask 1.1 above may also be applied to image datasets in which each pixel is a feature, e.g. the 40 person face database provided which contains ten images of 92*112 pixels per person. An image is stored as point in a 10304 dimensional feature space. Load a subset of 10 classes (persons) and display them by

Images = faces([1:10],[1:2])

show(Images)
(a) Plot the explained variance for the PCA as a function of the number of components. When and why reaches this curve the value 1?

(b) Perform PCA based on the examples in Images and call the resulting mapping wPCAFaces.
(c) The resulting PCA eigenvector mapping wPCAFaces are often called ‘eigenfaces’. These can be displayed by show(wPCAFaces). Display the first 19 eigenfaces computed by means of the command pca(Images).

1.3 Eigensubimages and Image Compression

To compress the above images as well as completely new images from the database, one strategy is to perform PCA on a set of subimages. The following code extract subimages of size 16x23 from the original 20 image above and convert each of them into a 368 x 1 column vector. Then PCA is performed on the covariance matrix obtained from the 2800 subimages extracted which results in the mapping wPCASubImages. In this particular code, 74 eigensubimages are extracted (20% of the 368 eigenvectors that constitute a full orthonormal basis). They are displayed by the command show(wPCASubImages).

disp('1.3 Eigensubimages and Image Compression')

rawImages=Images.data;

noOfImages=size(rawImages,1);
%PICK OUT SUBWINDOWS WITH SIZE 16x23 FOR PCA

% 1. PICK OUT ONE IMAGE FROM DATA BASE AND
% TRANSFORM INTO 112x92 IMAGE

% 2. USE THE FUCTION extract TO PICK OUT THE 16x23

% SUBIMAGES

% 3. PUT THE SUBIMAGES AS COLUMNS INTO THE MATRIX SubImages

SubImages=zeros(368,28*noOfImages);

for k=1:noOfImages,

 TMP=reshape(rawImages(k,:),112,92);

 X=extract(TMP);

 SubImages(:,(k-1)*28+1:k*28)=X;

end

%CONVERT TO DATA SET STRUCTURE AND PERFORM PCA

SubImages=dataset(SubImages');

SubImages=setfeatsize(SubImages,[16 23])

figure

plot(pca(SubImages,0))

title('Accumulated Variance Explained')

xlabel('No of eigenvalues')

wPCASubImages=pca(SubImages,74);

figure

show(wPCASubImages)

title('Eigensubimages')

%PICK OUT ONE EXAMPLE FROM PERSON NUMBER ELEVEN

%AND EXTRACT SUBIMAGES

Face11=faces(11,1);

dataFace11=Face11.data;

TMP2=reshape(dataFace11,112,92);

X2=extract(TMP2);

SubFace11=X2;

SubFace11=dataset(SubFace11');

%COMPRESS ALL EXTRACTED SUBIMAGES

scoreSubFace11=SubFace11*wPCASubImages;

scoreValuesSubFace11=getdata(scoreSubFace11);

%PERFORM KARHUNEN LOEVE RECONSTRUCTION

%OF EACH SUBIMAGE

m=mean(SubImages.data)';

P=wPCASubImages.data.rot;

for k=1:28,

 I(:,k)=P*scoreValuesSubFace11(k,:)'+m;

end

Face11_hat=reconstruct(I);

%COMPARE RECONSTRUCTION WITH ORIGINAL

figure

subplot(121)

imagesc(Face11_hat)

title('Reconstruction')

colormap(gray)

subplot(122)

imagesc(reshape(dataFace11,112,92))

colormap(gray)

title('Original')

disp('==')

disp(' ')

disp('press any key to continue');

pause
(a) Run the code and explain why the eigensubimages that correspond to the largest eigenvalue (on top in the resulting figure) may be called a “spot detector” and why the following ones may be called “edge detectors”?

(b) Run the code again but use approximately 10% and 30% of the eigensubimages for compression and reconstruction. How does the quality in the reconstruction change and why?

1.3 Hierarchical Clustering
Perform hierarchical clustering of the faces in the dataset Images using the following lines of code:

%Hierarchical clustering

Images = faces([1:10],[1:2]

figure

show(Images)

disp('Hierarchical clustering of 10 faces, two from each person')

D=distm(Images) %Compute Euclidean distance matrix

dentro=hclust(D); %Determine dendrogram

figure

plotdg(dentro) %Display dendrogram

title('Dendrogram of Faces')
Here, totally 20 pictures of 10 persons have been clustered, 2 pictures each.

(a) Explain why you think 1 and 2 are not clustered closely together?

1.5 K-Means Clustering

Perform K-Means clustering of the same data set using the following lines

noOfClusters=2; % Number of clusters

maxIter=50; % Max number of iterations

initialization=‘kcentres’; % Initialization method

clusterLabels = kmeans(Images, noOfClusters,maxIter,,initialization)
(a) Do the women cluster together?

(b) Change the number of clusters to 10. Do the resulting ten clusters contain a single person?

2 CLASSIFIER PERFORMANCE ESTIMATION

2.1 Receiver Operating Characteristics

Train a Fisher linear discriminant classifier using

D=gendath([30 30])

D=setprior(D,0); %All classes equally likely

 %Priors needed to avoid warnings from PRTools

D=dataset(D);

wFisher=fisherc(D);

TestSet=gendath([5000 5000]);
Now write help roc to understand more about how to create receiver operator characteristic (ROC) curves and then write code which makes it possible to calculate ROC curves for the classifiers designed. For example, to determine the ROC for the Fisher classifier one has to write

EFisher=roc(TestSet,wFisher,desiredClass,noOfPointsInROC);

This results in a structure EFisher that can be used to generate a ROC curve simply by

plotr(EFisher)

(a) Try this and you will find that the ROC curves do not display the probability of detection as a function of the probability of false alarm as many are used to. To obtain such a graph, one has to write the following lines:

EFisher.error=1-EFisher.error;

EFisher.ylabel='P_{D}';

EFisher.xlabel='P_{FA}';
Now plotr(EFisher) will result in a familiar ROC curve with the expected quantities written out on the axes.

(b) Train and compute ROC curves for the three different classifers fisherc, knnc and treec using data generated above. Since the plotr command can take several ROC curves, it is possible to present them in the same graph using a command like plotr({Efisher,Eknnc,Etreec}).

(c) Repeat (b) using TestSet = gendath([20 20]). Are the ROC curves smooth and stable? Repeat the data generation a few times.

2.2 Cross Validation
(a) Generate 200 different trainining data sets with 25 examples from each class from the Highleyman distribution (D=gendath([25 25])). For each data set, train quadratic discriminant classifiers (qdc) and test them on one big test set TestBig=gendath([10000 10000]). Determine the mean, the standard deviation, and the coefficient of variance of the test results. Also make a histogram using hist and save the test results.

(b) Try to understand what the function crossval does by running the following code

which performs 6-fold cross validation:

D=gendath([30 30])

D=setprior(D,0); %All classes equally likely

 %Priors needed to avoid warnings from PRTools

ClassifiersToTest={qdc}

noOfSplits=6;

ProgressReportFlag=1;

noOfReps=1; %Note: Not possible to calculate std in this case

[WeightedAverageTestError,TestErrorsPerClass,AssignedNumericLabels] = crossval(D,ClassifiersToTest,noOfSplits,noOfReps,ProgressReportFlag);

TestErrorsPerClass_qsc=TestErrorsPerClass{1}

TestErrorsPerClass_kNN=TestErrorsPerClass{2}
Set noOfReps=200 to perform two hundred 6-fold cross validations using different partitionings for the dataset D and determine the mean, the standard deviation (std) and the coefficient of variance (CV=std/mean).
 Compare with the “true” values calculated in (a) above.

(c) How many examples are used for training in each step of this 5-fold cross validation? How many examples are used for training in subtask (a)?

(d) Repeat (a) for different data sets generated as D=gendath([30 30]). Are the results stable?

(e) Does the cross validation estimate give us information about the average performance of the design procedure used and/or does it give us information about the performance of a particular classifier?

2.3 Holdout and Bayesian Confidence Intervals
Note: This problem can be solved without access to PRTools.

Assume that you have tested a trained classifier using N=20 external test examples and that you have made k=4 errors.

(a) Assuming no prior information about the true probability of misclassification, make a plot of the posterior function p(q|k=4,N=20) which describes the current uncertainty about the unknown performance q. Remember that the posterior may be written as

P(q|k,N)=qk(1-q)N-k

where  is a normalization constant. Calculate  by approximating the integral of interest by a discrete sum.

(b) In the same graphical window, plot p(q|k=40,N=200) and p(q|k=1,N=5).

(c) Write down the Bayesian credibility intervals that contain essentially all probability mass i.e. the interval where there is a visible difference between the posteriors and the coordinate axis.

(d) How do you interpret the fact that the upper limit of credibility interval for N=5 is far above 50%? What is your ‘rule of thumb´ recommendation about the minimum acceptable size of the test set in this case?

� Recall that PRTools assumes that data is stored in row vectors.

� NB: The abbreviation “CV” is also commonly used for “cross validation”.

PAGE
7

