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Målsättning och förberedelser

Målet med denna inlämningsuppgift är att du ska bekanta dig med några viktiga typer av klassificerare och med toolboxen PRTools
 för statistisk mönsterigenkänning i Matlab. Efter avslutat uppgift ska du kunna importera egna data med tillhörande information till PRTools och sedan  bygga och testa klassificerare samt visualisera två eller tre variabler i taget i s.k. scatterplots.
För att komma igång måste du först ladda ned och packa upp arkivet kodOchManualInlupp1.zip som finns att ladda ned på hemsidan. Efter extraktion av arkivet ska du ha en katalogstruktur som innehåller följande: 

1) En pdf fil som heter PRTools4.0.pdf och är manualen till toolboxen. 

2) En wordfil som heter LathundPRTools4.doc med de flesta funktioner i PRTools sammanfattade.

3) En underkatalog som heter prtools4.0download050905 som innehåller toolboxen.

4) En underkatalog som heter glue och innehåller filer som saknas i version 4.0 av toolboxen som behövs för inlämningsuppgiften. 
Notera till sist att i instruktionerna nedan antas att du har lagt upp ovanstående filer i en katalog enligt ovan och att du i denna katalog sedan också:

1) Laddat ned och skapat underkatalog som heter demodatasets som innehåller bilder och andra data som används i de uppgifter ni ska utföra.
2) Skapat ytterligare en underkatalog med namnet myfiles i vilken du placerar dina egna matlab-programfiler. 

För kompletterande information och fler exempel på hur toolboxen kan användas än de som tas upp här, kan du finna i den nedladdade manualen.

Redovisning

Redovisning sker genom att skicka in välkommenterad kod och en kort text i Word med bilder och text som visar att din kod fungerar och med svar på frågorna nedan. Lösningar till alla uppgifter ska lägga i en och samma matab-fil där resultaten från varje deluppgift ska göras tydliga på skärmen genom att  den inleds med programraden

disp(’EXERCISE X’)

som där X är en siffra som indikerar deluppgiftens nummer och sedan avslutas

med  programraderna

disp(’===================================================’) 

disp(’ press any key to continue’);pause
som genererar en dubbelstreckad linje som avslutning av respektive uppgift och försätter matlab i paus-läge. Ett exempel: Antag att deluppgift 1.0 innebär att du ska beräkna summan av talen ett och två. Här följer en tänkbar lösning:

disp(’Exercise 1.0’)

a=1

b=2

sum=a+b

disp(’===================================================’) 

disp(’ ’)

disp('press any key to continue');pause
PRTools - EXERCISE I

In this first exercise about PRTools, you will learn how the toolbox is organized around a particular datastructure called dataset and about basic operations called mappings that one may perform on dataset objects. You will also learn about how to design and study classifiers.

The following lines should be added at the beginning of your code. Do not worry about the warning messages that appear when the code is running: This is because some of the default matlab functions are redefined:

clear all 

close all

%Add current path to the list of matlab paths

path=pwd

disp(['addpath ''' path ''''])

eval(['addpath ''' path ''''])

%Jump up from your personal catalog called myfiles

%and add PRTool functions to the path

cd ..  

cd prtools4.0download050905

path=pwd

disp(['addpath ''' path ''''])

eval(['addpath ''' path ''''])

cd .. %jump up again

%Add demonstration datasets to the list of matlab paths

cd demodatasets

path=pwd

disp(['addpath ''' path ''''])

eval(['addpath ''' path ''''])

cd ..

%Add Extra files from PRTools3.2.5 not available in PRTtools4.0

cd glue  

path=pwd

disp(['addpath ''' path ''''])

eval(['addpath ''' path ''''])

cd ..

%Return to the home catalalog myfiles

cd myfiles 

%Increase from default gridsize(30) used for fast plotting - we need careful drawings of contours:

gridResolution=gridsize(100)
This clears all variables and closes all figure windows. Finally the catalog you are starting from is added to the search path used by matlab to check for functions to run and data to load. 

Part 1 –The data structure dataset

1.1 Importing Data - A Wine Quality Example

To be able to start working with PRTools, the raw data set and associated information such as class labels and names of the pattern features need to be imported into the PRTool data structure dataset. As an illustrative example, assume that you are going to classify bottles of wine into two categories ‘bad’ and ‘good’ quality based on the absorption of infrared light transmitted through the bottles at two different frequencies f1 and f2. The corresponding absorption coefficients 1 and 2 are the features to be used for classification. Assume that for the ‘good’ class, the transmission coefficients are normally distributed with mean vector m1=[1 1] and covariance matrix C1=[1 0;0 1].  For the ‘bad’ class, assume mean vector m2=[3 3] and covariance matrix C2 = C1.  

(a) Generate 200 examples from each class by means of the matlab function randn and store them together in a 400 x 2 matrix called D with the 200 examples from class 1 as the first 200 rows. 

(b) Plot the 400 examples with one color per class to study how the patterns are distributed in 2D space. Use the commands xlabel and ylabel to write out the feature names ‘alpha1’ and ‘alpha2’ on the coordinate axes. Here you may have use of the commands hold on/ hold off.
(c) Repeat (a) above with only 3 examples per class to simplify the task that follows below. Thus, after completing this subtask (c) you should have a 6 x 2 matrix with the 3 examples from class 1 at the first 3 rows. Check this with the command whos.
To import only the matrix D into the PRTools structure dataset, the following matlab command can be used:

%Import D into the structure WineData

WineData=dataset(D)

Now WineData is the name of a PRTools dataset structure that may contain different sorts of associated information stored as different fields. One field is WineData.data which contains the raw data matrix D. To import class membership information into some of the other fields of WineData, perform the following:

%First generate a list of labels for each pattern using genlab

%Then import this information into WineData using setlabels

objectClassLabels=genlab([3 3],{'good';'bad'})

WineData=setlabels(WineData,objectClassLabels)
This assignment automatically creates the field WineData.lablist which is a column vector with the label ‘bad’ on first row and the label ‘good’ on the second row. Thus, this field is a list of all different class labels in alphabetical order. Moreover, the assignment above creates the field WineData.nlab which is a 6 x 1 column vector with its elements being integers indicating to which class each object (example) in D belongs. You may check this simply by writing e.g. WineData.lablist. 
To import the feature names ‘alpha1’ and ‘alpha2’ into WineData, perform:

%Set feature names

WineData=setfeatlab(WineData,{'alpha1';'alpha2'})
Now the raw data D and all the associated information about class and feature labels have been imported into the PRTools data structure dataset named WineData. In the next task we will consider how to retrieve this information again but first we summarize all the fields that exist in every dataset structure (for more information use the help command in Matlab as well as the PRTools manual). For a dataset called A, the fields are:

  A.data    = data

  A.nlab    = numeric labels, index in lablist

  A.featlab = feature labels

  A.featdom = feature domains

  A.prior   = prior probabilities

  A.cost    = classification cost matrix

  A.lablist = labels of the classes

  A.targets = dataset with soft labels or targets

  A.labtype = label type: 'crisp','soft' or 'target'

  A.objsize = number of objects or vector with its shape

  A.featsize= number of features or vector with its shape

  A.ident   = identifier for objects (integer)

  A.version = PRTools version used for creating dataset

  A.name    = string with name of the dataset

  A.user    = user field

1.2 Retrieving Dataset Information

Retreiving information from a dataset structure is performed using some PRTools specific functions. To retrieve the information put into WineData as above and compare with the original data matrix D, run the following lines:

D  % This line simply shows the values in D

D_retrieved=getdata(WineData)

classObjectLabels_retrieved=getlabels(WineData)

classLabelList_retrieved=getlablist(WineData)

classIndices_retrieved=getnlab(WineData)

featureLabels_retrieved=getfeatlab(WineData)
Q: Compare with the assignments made earlier. Did your retrieve what you expected?

1.3 Visualization Using Scatterplots

Create a new three class dataset structure named A using the following lines
data = [rand(4,5);randn(2,5);rand(3,5)+1]

A = dataset(data)

labels = genlab([4 2 3],char('apple','pear','banana'))

A = dataset(A,labels)
Q: Explain what the resulting dataset structure contains.
One way to inspect a dataset is to make a scatterplot of the objects in the dataset. For this the function scatterd is provided in PRTools. This plots each object in a dataset in a 2D graph, using a colored marker when class labels are supplied. When more than two features are present in the dataset, the first two are used. For obtaining a scatterplot of two other features they have to be explicitly extracted first, e.g. using the command A1 = A(:,[2 5]). Use scatterd to make a scatterplot of the features 2 and 5 of the raw data in structure A. 

Also test the function scatterdui (scatterplot with user interactivity) that allows you to plot different features against each other. If you click on a sample in the plot, the corresponding index in a dataset is written nearby. A right-button click clears all printed indices. Buttons along axes allow for browsing through the dataset dimensions. Selected points are remembered when the plotted dimension changes. 

Q: Use the buttons in the graphical window to study what happens for different features. What happens when the same feature is used on both axes?

Open a new figure using the command figure and then make a 3-dimensional scatterplot by the command scatterd(A,3). Try to rotate the plot by clicking on the icon for rotation in the top bar.

1.4 Showing an Image Data Set
Load one part of a dataset that consists of images of human faces by means of the command A = faces([1 3],[1:4]);. This picks out the first four pictures of the subjects 1 and 3 in the database and creates a datastructure dataset named A. Display the pictures by the command show(A). 

Q: Open a new graphical vindow using figure and extract one image for each of all the 40 persons in the database and display them. This may take some time for Matlab to complete. NB: Do not try to import all images – too much time and RAM is required!

Part 2 –Classification using the data structure mapping 
In PRTools datasets are transformed by mappings. These are procedures that map a set of objects from one pattern space into another. Examples are feature selection, feature rescaling, rotation of the space, and classification. In a mapping (usually the variable w is used for mappings) one may store different kinds of information like the dimensionalities of input and output space, parameters that define the transformation itself and the routine that is used for executing the transformation. In the tasks below, write struct(w) to see all fields. You can also type help mapping and or help mappings to get more information about the result from a mapping operation. Often a mapping has to be trained, i.e. it has to be adapted to a training set by some estimation or training procedures to maximize some performance estimate on the training set.

An important and easily understood subtype of a mapping is a classifier. It maps (transforms) a dataset into class score values or class posterior probability estimates. They can be used in an untrained as well as in a trained mode. When applied to a dataset, in the first mode the dataset is used for training and a classifier is generated, while in the second mode the dataset is classified. Some important classifiers available in PRTools are:

qdc Quadratic classifier assuming normal densities

udc Quadratic classifier assuming normal uncorrelated densities

ldc Linear classifier assuming normal densities with equal covariance matrices

nmc Nearest mean classifier

parzenc Parzen density based classifier

knnc k-nearest neighbor classifier

treec Decision tree

svc Support vector classifier

lmnc Neural network classifier trained by the Levenberg-Marquardt rule

In this task, simulated data sets will be generated to design and test a subset of selected classifiers.

2.1 Classifier Design and Decision Boundaries

Let us begin with a simple example which illustrates classifier design and how to plot decision boundaries in 2D scatterplots by plotc. 

(a) Generate a dataset and make a scatterplot by

D = gendath([40 40]);

scatterd(D)

Q: From what pdfs does gendath generate data? 

(b)  Train and plot the decision boundaries of five different classifiers by

w1 = qdc(D);

w2 = ldc(D);

w3 = svc(D);

w4 = knnc(D); 

w5 = treec(D);

plotc({w1,w2,w3,w4,w5})

Q: Why are the decision boundaries of the decision tree always parallel or orthogonal to the coordinate axes?

Repeat the calculations a few times to study the dramatic variability in the resulting decision boundaries for the different training data sets randomly generated in each run. NB: The legend with information about the different curves can be moved around inside and even moved outside the graphical window.

(c) Create a new graph using figure and plot the data again using scatterd. Then train and write out the decision boundaries for the four k-NN classifiers  (knnc) with k=1,20,40,60. Repeat this experiment at least three times to study the variability in the decision boundaries and to confirm your conclusions. You may temporarily increase the grid resolution as gridResolution=gridsize(400).
Q: How does the complexity and smoothness of the decision boundaries change when k is increased? Would you prefer small or large values of k in this case? Do you find it difficult to answer these questions - why?
2.2 Testing Using New Examples

Once a classifier has been designed, it is natural to test its performance on new test examples that were not used in the design (holdout testing). First, generate 100 new test examples per class:

TestSet=gendath([100 100]);

Then apply these test examples to classifier w1. This may be done using the command map as mappedTestSetw1 = map(TestSet,w1). A more convenient solution is to use the equivalent command

mappedTestSetw1 = TestSet*w1   %Apply the test examples to w1

This result in score values stored in the dataset structure mappedTestSetw1, one for each class. Finally, those score values need to be transformed into crisp decisions i.e class labels. This is performed by the function labeled which compares the score values and makes a decision for each example. Thus, crisp class assignments are obtained as

ClassAssignmentsTestSetw1=labeld(mappedTestSetw1)'

To compare with the true labels, they can be extracted from the dataset structure with the command

trueAssignmentsTestSet=TestSet.nlab’;

or

trueAssignmentsTestSet=getnlab(TestSet)’;

Finally, we may compare the true assignments with the classifier assignments and count the number of classification errors made:
NoOfTestErrorsw1=sum(ClassAssignmentsTestSetw1~=trueAssignmentsTestSet)

2.3 True Errors – Testing Using Many Examples
Generate 10000 test examples per class by TestBig=gendath([10000 10000]); and determine accurate estimates of the performance of all classifiers after a single run. For example, the performance of the classifier w1 is obtained as

mappedTestBigw1 = TestBig*w1;

[e_truew1,noOfErrorsPerClassw1]=testc(mappedTestBigw1)

ew1=noOfErrorsPerClassw1/10000

Note that he last row calculates the probabilities of the individual errors per class whereas e_truew1 on the row above is the fraction of total errors made.
Q: Rank the classifiers according to their performances. Repeat twice and compare the three ranking lists obtained.

Q: Does any classifier have a large bias towards one type of classification error? 

2.4 Multi-class Problems and Decision Boundaries

In many cases, we consider binary (two class) classification but there may of course also be more than two classes. Try to understand and run the following lines of code which generate data from four classes, present the examples in a scatterplot together with decision boundaries and colored decision regions, one for each class. These calculations will take some time but dots are printed out on the command line to show progress:

A=gendath([20,20])

dataA=getdata(A);

B=gendath([20,20]);

dataB=getdata(B);

dataC=[dataA;dataB+3]; %Adding 3 to all features in class 3 and 4

theta=5*pi/8;

dataC=dataC*[cos(theta) -sin(theta);sin(theta) cos(theta)]; %rotate

labsC=genlab([20 20 20 20],[1 2 3 4]');

C=dataset(dataC,labsC);

C=setname(C,'A four class data set');

figure

subplot(221)

scatterd(C); %make scatter plot for right size

w=qdc(C);

plotc(w,'col') %Plot decision boundary, use colors

title(‘ Quadratic’)

subplot(222)

scatterd(C); %make scatter plot for right size

w=treec(C);

plotc(w,'col') %Plot decision boundary, use colors

drawnow;

title('Decision Tree')

subplot(413)

scatterd(C); %make scatter plot for right size

drawnow;

w=knnc(C);

plotc(w,'col') %Plot decision boundary, use colors

title('Nearest Neighbor')

subplot(414)

scatterd(C); %make scatter plot for right size

drawnow;

w=svc(C);

plotc(w,'col') %Plot decision boundary, use colors

title('Linear SVM')

disp('====================================================')

disp(' ')

disp('press any key to continue');pause

Run the code a few times and study how the decision boundaries change between different data sets. Before studying the details and get the texts written out properly you should enlarge the graphical window to cover the whole screen. Also note how different the decision regions are between the classifiers! 

Q: What can you say about the complexities of the decision regions created by the four different classifiers? Which classifier has the most/least complex decision regions?

Remark. Quite often the examples from one of the classes are not displayed in the graphs but this problem should be ignored.

2.5 Learning Curves
A learning curve displays the estimated classification performance as a function of the number of training examples. PRTols has a function cleval (classifier evaluation) that randomly samples the dataset (with replacement) to pick out a training set of a specified size. If one does not provide any test set, after training the classifier is tested using only the examples not used for training.
. If one specifies several training set sizes in one run, the smaller training sets are subsets of the larger ones.

Run the following code to determine learning curves for the quadratic discriminant and the decision tree classifiers:

A=gendath([200 200])  %200 examples per class

noOfRep=10;  %Number of repeats

ProgressFlag=1; %A flag that yields progress report on the command line

trainingSizesPerClass=[4 6 8 10 12 14 16 18 20 30 40 50 60 70 80 85 90 95 100];

figure

testSet=[];

eClassifiers=cleval(A,{qdc,treec},trainingSizesPerClass,noOfRep,testSet,ProgressFlag);

plotr(eClassifiers,'errorbar') %plot with error bars

Open a new graphical window with figure and repeat the above calculations for the more demanding situation where the number of examples available is only 20 per class. Determine and plot the learning curve for the following training sizes [4 6 8 10 12 14 16 18]. 

Q: Why does the variance increase dramatically when almost all examples are used for training i.e. when the number of test examples becomes very few?

----------------------------------------------  END ---------------------------------------------------

� utvecklad vid  Delft University of Technology i Holland. 


� In the help for cleval it is written that all examples are used for testing but this is not true.





PAGE  
2

