Plausible Reasoning
Chapter 1 in Jaynes’ Probability Theory

Annea Barkefors

Course on Bayesian Inference, 2011
Outline

1. Summary of the chapter
2. Short comparison with our neighbours
Outline

1. Summary of the chapter

2. Short comparison with our neighbours
The Origin

- We want to have a mathematical theory, that is able to reason in a fashion similar to the way we do
- With this in mind, we imagine a robot, with a brain capable of plausible reasoning
Deductive reasoning makes use of two strong syllogisms, from which conclusions can be reached.

if A is true, then B is true

A is true

therefore, B is true

if A is true, then B is true

B is false

therefore, A is false
Plausible reasoning use weaker syllogisms, from which no definite conclusions can be reached, but we become more or less certain of our proposition

If A is true, then B is true

B is true

Therefore, A is more plausible

Example:

$A \equiv$ we will play volleyball at 15

$B \equiv$ the sky will be sunny before 15
Plausible Reasoning

if A is true, then B is true

A is false

therefore, B becomes less plausible

if A is true, then B becomes more plausible

B is true

therefore, A becomes more plausible
The plausibility that the robot assigns to some proposition A will, in general, depend on whether we told it that some other proposition B is true.

This is called conditional plausibility, and is indicated by $A|B$.
Boolean Algebra

- Boolean algebra is the algebra of logic. We have propositions A, B, \ldots, that can either be true or false.
- The equations consists of assertions that the propositions on the left-hand side is logically equivalent to the one on the right-hand side.
- Two propositions A and B have the same truth value if one is true if and only if the other is true: they are logically equivalent propositions.
Boolean algebra has several operations:

- logical product / conjunction: AB
- logical sum / disjunction: $A + B$
- denial: $\overline{A} \equiv A$ is false
- implication: $A \implies B \quad (A = AB)$

- NAND: $A \uparrow B \equiv \overline{AB} = \overline{A} + \overline{B}$
- NOR: $A \downarrow B \equiv \overline{A + B} = \overline{AB}$

With the help of these operations, any logical function can be generated.
The Basic Desiderata

Desideratum I

Degrees of plausibility are represented by real numbers.

Desideratum II

Qualitative correspondence with common sense

Desideratum III

a) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result.

b) The robot always takes into account all of the evidence it has relevant to a question.

c) The robot always represents equivalent states of knowledge by equivalent plausibility assignments.
The Basic Desiderata

Desideratum I

Degrees of plausibility are represented by real numbers.

Desideratum II

Qualitative correspondence with common sense

Desideratum III

a) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result.
b) The robot always takes into account all of the evidence it has relevant to a question.
c) The robot always represents equivalent states of knowledge by equivalent plausibility assignments.
The Basic Desiderata

Desideratum I

Degrees of plausibility are represented by real numbers.

Desideratum II

Qualitative correspondence with common sense

Desideratum III

a) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result.

b) The robot always takes into account all of the evidence it has relevant to a question.

c) The robot always represents equivalent states of knowledge by equivalent plausibility assignments.
Outline

1. Summary of the chapter
2. Short comparison with our neighbours
The pink’s book approach to probability uses axiomatic definitions:

axiom 1: $P(A) \geq 0$

axiom 2: $P(S) = 1$

axiom 3: $P \left(\bigcup_{n=1}^{N} A_n \right) = \sum_{n}^{N} P(A_n) \quad \text{if } A_m \cap A_n = \emptyset$
What does Jaynes think about set theory and Venn diagram?

The points in the circle A "must represent some ultimate 'elementary' propositions ω_i into which A can be resolved. . . But the general theory we are developing has no such structure; ... these things are properties only of the Venn diagram."
What does Jaynes think about set theory and Venn diagram?

The points in the circle A "must represent some ultimate 'elementary' propositions ω_i into which A can be resolved. . . . But the general theory we are developing has no such structure; ... these things are properties only of the Venn diagram."
The conditional probability of an event A, given B, is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The events A and B are statistically independent if:

$$P(A|B) = P(A), \quad P(B|A) = P(B)$$
What does Jaynes think about conditional probability?

"The plausibility that the robot assigns to some proposition A will, in general, depend on whether we told it that some other proposition B is true"
"We may call [this] ’the conditional probability that A is true, given that B is true’"

Conditional probability is not just a ’defined quantity’.
What does Jaynes think about conditional probability?

"The plausibility that the robot assigns to some proposition A will, in general, depend on whether we told it that some other proposition B is true"

"We may call [this] 'the conditional probability that A is true, given that B is true’"

Conditional probability is not just a ’defined quantity’.
What does Jaynes think about statistical independence?

Well, I don’t know, because I haven’t found him talking about it. The guess would be, though, that since conditional probability is such a basic thing, it is not that interesting at this stage.
What does Jaynes think about statistical independence?

Well, I don’t know, because I haven’t found him talking about it. The guess would be, though, that since conditional probability is such a basic thing, it is not that interesting at this stage.