Mikael Sternad 2003-03-24

Project Courses in Process Control and Adaptive Signal Processing

Recursive ARX identification/adaptive modeling

In previous lectures, we discussed methods for estimating linear black-box models
for dynamic systems. These methods were based on blocks of measured input-
output data. We discussed time-invariant models for single-output systems and the
model adjustment was performed by prediction error methods. Various discrete-
time model structures were expressed as one-step predictors, and the sum of
squared prediction errors was minimized for the whole data block [3, 2].

An alternative to such block methods are discussed here: recursive methods. These
algorithms modify a pre-existing model sample by sample, as new measurements
become available [3, 4, 5]. Recursive adaptation algorithms can be expressed as
time-varying filters, that modify the model by filtering the prediction errors. If
the prediction error is small, the model remains unchanged. If it is significant, the
model parameters are adjusted so that the error is decreased. Such time-varying
self-adjusting models are called adaptive models.

To simplify the discussion, we here specialize the model structure to a scalar linear
regression model of ARX type, for possibly complex-valued scalar data y(¢).

Given data {y(i),u(i)},_; we are to adjust a time-varying linear regression model

y(t) = " (1)0(t) +£(t) (1)
where the first right-hand term represents a one-step predictor for the scalar y(¢)
gt —1,0(2)) = " (1)0(1) (2)

Here, (-)¥ denotes Hermitian transpose (complex-conjugate transpose), while (-)*
will denote the complex conjugate of complex scalars. Thus, (-)# = (-)**. Further-
more,

0t) = (ai(t)---ana(t) bo(t) .. bus(t) )" (3)

oft) = (—yt—=1)...—y(t—na) ult —k)...ut—k—nb)) . (4)
The discrete time index ¢ is used in () to indicate dependence of data up to
time ¢. In signal processing applications, we normally assume models with possibly

no delay, £ > 0. This model corresponds to a time-varying linear autoregressive
model with external input (ARX model)

~

Ai(gV)y(t) = Blg Hu(t — k) +e(t) . (5)

The one-step predictor (2) corresponds to

g(tlt = 1,6(8)) = [1 = Ai(g7)]y(t) + Bula™ ult — k) (6)



and
y(t) —9(tlt —1,0(t)) = ()

The model residual €(¢) in (6) thus equals the one-step prediction error for this
particular model structure. Special cases of (1)- (6) include FIR models (na = 0),
all pole models (nb = 0, B;(¢ ') = by(t)) and autoregressive models of time-series

(Bi(g ") = 0,u(t — 1) = 0).

We now assume a stochastic framework, in which the measurements y(t) are re-
garded as stochastic variables. Repeated experiments, each performed by using the
samaiaphtseqpected{ tdi¢éult in an ensemble (a set)

rent output trajectories. This means that the residual £(¢) in the model (2),

regarded as a stochastic process. In a stochastic framework, an minimum

square error adjustment of the parameter vector 6(¢) would be obtained by

izing the loss function

g At S Ble(t,0) = % Ee(t,0)7=(t,0) (7)

where E (-) denotes an ensemble average over all stochastic variables affecting the
regressors {y(i)}/Z}_,., and the measurement y(¢). (The input u(t) is regarded as

deterministic and known.)

However, we are at this point faced with three complications.

1. The ensemble average E (-) in (7) cannot be measured directly and exactly.
We do not, in general, run an ensemble of experiments. A common way
out of this dilemma is to assume ergodicity: ensemble averages equal time
averages. We may then keep the parameter 6(t) unchanged for a time interval
and approximate the ensemble average by a time average over this interval.
Time averaging has been investigated in e.g. [5]. Interestingly, turns out
that not much is gained by using long averaging intervals, compared to very
short intervals. This phenomenon will be utilized in the algorithms that are
discussed below.

2. The underlying system that generates our data could have time-varying prop-
erties. That possibility is in fact a main motivation for the use of recursive
adaptation. If no time-variability is expected, we might just as well use block
methods!

For time-varying systems, we can not, without further assumptions, deter-
mine the sequence of parameter vectors (¢) uniquely from a sequence of
measurements

y(1) =" (1)0(1) +e(1) , y(2) = ¢"(2)0(2) +e(2) , ...

This is not possible even in the noise-free case, unless the model has only
one single parameter! We would end up with a set of unknowns (1) 6(2) ...
with more elements than the available measurements y(1),4(2).... To avoid
this dilemma, assumptions must be introduced on the relationship between
parameter vectors 6(t) and 6(7) at different points in time.

2



Here, we will use very simple assumptions on time variability, that turn
out to be adequate for the Process Control course. We will assume the
optimal parameter adjustment to change only slowly, with relatively constant
speed. A more systematic methodology, based on Kalman estimation, will be
introduced in later lectures within the Adaptive Signal Processing course.

3. The ARX model structure (5) may be inappropriate and/or the selected
degrees na,nb may be too low. If the model structure is not sufficiently
flexible, then the prediction error will remain correlated with the regressors.

We must then modify or extend the parameter space, by increasing the model
orders, by testing other model structures such as output error or ARMAX
models, or by introducing models that are nonlinear in the signals or in
the parameters. We will encounter problems with the ARX model structure
within the Indirect Adaptive Control project in the Process Control course.
There, the model structure will have to be extended to an ARMAX model
structure

A(q Hy(t) = Bi(g Hult — k) + Ci(g He(t)

A recursive algorithm for adjusting 6(¢) can now be thought of as a numerical
search for the point §(¢) in parameter space that minimizes J, defined by (7). For
an ideal adjustment, the error (¢) would be white, zero mean and uncorrelated
with the regressors. With a model adjusted in this way, no further improvement
could be attained without new data.

Recursive algorithms for adjusting dynamic models are designed to start with any
prior information that provides an initial model, with parameter vector 6(0). They
then compute adjustment vectors Af(t)

B(t+ 1) = 0(t) + AO(2) (8)

designed to decrease the value of J, on average.

Among minimization schemes, it is natural to first consider the steepest descent
algorithm, in which the update steps Af(t) are taken in the negative gradient
direction. The gradient of a function J(f) of a possibly complex-valued column
vector # = x + jy of dimension m is defined as the row vector

oJ 0J oJ oJ

The gradient vector is perpendicular to the level curves of J(f) at each point 6.
For a given (fixed) parameter vector 6(¢) = 6, the gradient vector of the criterion
(7) can be shown to be given by

vr=2(Z0) —o (Ll B 60 - " 0060 - o 00)]

00+

= 9B (W) w(t) = " ()0) = 2B p(D)e(t) (10)



where we used [ (¢)]*T = (t) in the last equality. The first equality relates the
gradient to the so-called conjugate derivative of J() (12), a relation explained
in detail in Appendix B of [4].) When considering more advanced optimization
schemes than steepest descent, the Hessian, i.e the matrix of second derivatives
at the point #, becomes of interest. A matrix proportional to the Hessian can be
shown to be obtained by operating with (11) on the conjugate derivative:

) (&](0)) )

25 | 5a | = 35 [TEP((D) =" (0] =Ee(t)e" () . (13)

Thus, the Hessian matrix will for linear regression ARX models equal the regressor
covariance matrix. (This will not be true in more general cases.)

If the gradient (10) were measurable directly, we could construct a recursive al-
gorithm that decreases the criterion J by changing # along the negative gradient
direction in parameter space:

0(t+1) = 0(t) + wE{p()e()} = 0(t) +uOE{pt)[y(t) — " (O]} . (14)

Here, we have introduced a scalar and possibly time-varying step length parameter
u(t) that scales the steps taken in the negative gradient direction. The step length
could be tuned differently for different elements of 6(¢). We then substitute p(t)
by a diagonal matrix, with possibly unequal diagonal elements.

A method that provides much faster initial convergence towards the optimum is
the Newton method:

O(t+1) = 6(t) + p(t) (E 90(15)s0(7f)H)_1 Ep(t)e(t) . (15)

The instantaneous negative gradient E ¢(t)e(¢) has here been multiplied by the
inverse Hessian matrix (13), which equals the inverse regressor covariance matrix.
This matrix will shift the search direction from a gradient direction to a Newton
direction, which aims directly towards the minimum. The regressor covariance
matrix

R 2 Eo(t)p(t)"” (16)

will be invertible (have full rank) if the input sequence wu(t) is persistently ex-
citing. This condition is fulfilled if u(¢) has nonzero spectral density at least at

!Functions of complex variables have unique derivatives only if the Cauchy-Riemann equations
are fulfilled, see e.g. [7]. This will not be the case for J(6) at the origin § = 0. Therefore, there
exist several possible derivative vector functions that can be defined based on the derivatives
with respect to real and imaginary parts, and which all have reasonable properties. One of them
is

T
o _1(o 8 6 5 "
00 2 \0x; Oy 0rm  OYym

and another one is the conjugate derivative
& 1(8 9 d a\"
— ==+ = ... 12
56~ ~ 2 (6381 *on Bam | aym) (12)

The relation of the gradient (9) to the conjugate derivative is evident.

4



nf = na + nb + 1 frequencies.

We now need estimates of the (ensemble) averages appearing in (10) and (13).
As mentioned earlier, a time average may be used if ergodicity is assumed. An
extremely simple but crude estimate of the gradient, which works surprisingly well,
is to use the instantaneous value as approximation of the average:

Ep(t)e(t) = ¢(t)e(t) (17)

When (17) is used in the gradient law (14), we obtain the LMS adaptation law
[5, 6, 4]
Ot +1) = 0(t) + ut) p(t) (y(t) — " (1)0(2)) - (18)

~

Approx. negative gradient

This adaptation rule was introduced by Widrow and Hoff around 1960. It is effec-
tive in many applications and it is still widely used.

An estimate of the Hessian matrix, which is completely accurate only when the
system is time-invariant and if the parameter vector 6(t) is held fixed, is obtained
by the time average:

1< 1.
Ee(t)p(t)" ~ 2 3 e(r)e(n’ £ ZR() . (19)
7=0
This sum can be updated recursively,
R(t) = R(t 1) + p(t)p®)" . (20)

If we now use the approximations (17) and (19) in the Newton adaptation scheme
(15) and if a decreasing step length

pl) =7

is introduced, then the recursive least squares algorithm (RLS) is obtained:

o) - (21)

0t+1) = 0(0) + 1R 9(0) (1) — ¢
e(t)

Thus, the Recursive Least Squares method for adapting ARX models can be seen
as a stochastic Newton method which approaches the optimum with decreasing
step length.

An alternative way of deriving (21) is to start from the ordinary off-line least
squares estimate for the model (5) and rewrite it in recursive form. See p7-9 in [8].

The presence of the inverse of R(¢) in (21) is inconvenient, since this inverse would
have to be computed at each model update. However, instead of updating the
estimated regressor covariance matrix R(t) via (19), we may directly update the
inverse which appears in (21). The inverse may be expressed as

R() " = [R(t— 1)+ o(t)e"(1)] 2P(t) . (22)

5



A direct update of (22) is accomplished by using the Matriz Inversion Lemma: If
A and B are matrices of appropriate dimensions, then

[A+BB"] = A"~ A'BI+B"A'B]'B"A"! (23)

The use of (23) in (22) with A= = R(t — 1)~! = P(¢t — 1) gives the so-called
Riccati equation for updating P(t),

P(t—De(t)e" ()Pt - 1)
L+ f ()Pt = 1)p()

P(t)=P(t—1) — (24)

and the RLS parameter update equation (21) is

0t +1) = 0(t) + P(t) p(t) (y(t) — 0" (1)0(2)) - (25)

Approx. negative gradient

The point in using the update (24) instead of (20) is that a matrix inversion is
then avoided. The denominator of the right-hand term in (24) is scalar, for scalar
measurements y(t).

Initially, P(¢) will be uncertain and sensitive to new data, since it is based on few
samples. As more data is accumulated, the estimate improves and stabilizes. The
matrix P (¢) will be an estimate of the inverse Hessian. When ¢ — 0o, a comparison
with the theory for off-line LS estimates shows that P(¢)E |¢(¢)|? is an estimate
of the parameter error covariance matriz, when a model with correct structure is
adapted and when a time-invariant system generates y(t).

This provides an interpretation that aids the selection of an initial value for P(0):
If the initial model parameter vector 6(0) is reasonably accurate, then P(0) should
be selected to approximate the covariance matrix of the initial parameter error. On
the other hand, if no information on a good initial model is present, §(0) might as
well be initialized as a zero vector. The initial P-matrix is then typically selected
as a diagonal matrix with large diagonal elements. The approximate negative gra-
dient in (25) will then initially be multiplied by high gains for all parameters. This
results in a fast initial convergence. As the model improves, the norm of P(¢) will
decrease quickly, and so will the gain in the RLS algorithm.

However, the RLS algorithm (24), (25) is essentially just a recursive approximation
of the off-line (batch) least squares estimate, designed for a time-invariant system.
As the data batch increases in length, each new prediction errors will have less and
less influence compared to the already accumulated information. The step length
goes towards zero and the ability to react to new information vanishes.

If the underlying system is time-varying, this property is clearly unsatisfactory.
The best approach would then be to design an adaptation law that is tuned to
the expected types of time-variations. A suboptimal approach, which often (but
far from always) gives acceptable results for slow and steady parameter drifts is
to modify the RLS law. The modification must prevent the adaptation gain from
converging towards zero. The most common modification is to substitute the



average in the criterion (7) by a time-average which is exponentially discounted:
old values are weighted less in the criterion:

t

T(6) = S AT Je(r) P (26)

T7=1

An exponential data window with forgetting factor 0 < A\ < 1 corresponds approx-
imately to the use of a rectangular data window of size
2
N~ —— .
1-—A
The introduction of the modification (26) will leave the parameter update equation
(25) unchanged. The Riccati update is however modified to

1 P(t — Do) ()Pt - 1)

PO =3 1P == mipi - 1))

(27)

We have then obtained the Recursive Least Squares algorithm with exponential
forgetting, or exponentially weighted RLS. The term P(t — 1)/ in (27) tends to
blow up the matrix. It can be seen as representing the increase in parameter uncer-
tainty due to forgetting of old data. The last (negative) right-hand term balances
this increase. It represents the decrease in uncertainty due to new information via
the latest prediction error.?

The choice of window length (forgetting factor) will be a compromise between
tracking ability and noise sensitivity. In some problems such as adaptive control,
the use of a time-varying forgetting factor improves the performance. The com-
promise between tracking ability and noise sensitivity will in a similar way affect
the choice of the step length parameter p(t) in the LMS algorithm (18).

The RLS algorithm will provide a much faster initial convergence towards the opti-
mum than LMS. However, it should be emphasized that neither LMS nor RLS can
be considered consistently superior relative to the other when tracking parameters
of time-varying systems.

Practical aspects on the use of RLS algorithms are discussed on separate slides.

2Note, however, that when A < 1, a strict interpretation of P(¢) in the RLS algorithm as a
parameter error covariance matrix is no longer possible.

7



References

[1] L. Ljung and T. Séderstrom, Theory and Practice of Recursive Identification.
Prentice-Hall 1983 (out of print).

[2] L. Ljung System Identification: Theory for the User. Second Ed. Prentice-Hall
1999.

[3] T. Soderstrom and P. Stoica, System Identification Prentice Hall Interna-
tional, 1989.

[4] S. Haykin Adaptive Filter Theory Third ed. Prentice-Hall 1996.
[5] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Prentice-Hall 1985

[6] M.H. Hayes, Statistical Digital Signal Processing and Modeling. Wiley, New
York, 1996.

[7] N. Levinson and R.M. Redheffer Complex Variables Holden-Day, San Fran-
cisco, 1970.

[8] A. Ahlen and M. Sternad Introduktion till adaptiv regrering. Kompendium,
Uppsala Universitet 1988.



