TMS320C6000 DSK
Board Support Library
APl User’s Guide

Literature Number: SPRU432A
October 2001

j [PRINTED WITH % TEXAS
SOVINK|. INSTRUMENTS

&

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI's terms and conditions of sale supplied at the
time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Tl components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
Tl patent right, copyright, mask work right, or other Tl intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or
liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 0 2001, Texas Instruments Incorporated

About This Manual

Preface

Read This First

The TMS320C6000™ DSK Board Support Library (BSL) is a set of application
programming interfaces (APIs) used to configure and control all on-board de-
vices. Itis intended to make it easier for developers by eliminating much of the
tedious grunt-work usually needed to get algorithms up and running in a real
system.

Some of the advantages offered by the BSL include: device ease of use, a level
of compatibility between devices, shortened development time, portability,
some standardization, and hardware abstraction. A version of the BSL is avail-
able for the TMS320C6711™ Developers Starter Kit (DSK).

This document is organized as follows:

[Introduction — a high level overview of the BSL
(1 Six BSL API module chapters
(1 Glossary

How to Use This Manual

The information in this document describes the contents of the
TMS320C6000™ board support library (BSL) as follows:

[Chapter 1 provides an overview of the BSL, includes a table showing BSL
API module support for various C6000 devices, and lists the API modules.

(1 Each additional chapter discusses an individual BSL API module and pro-
vides:

B A description of the API module

B A table showing the APIs within the module and a page reference for
more specific information

B A module API Reference section in alphabetical order listing the BSL
API functions, enumerations, type definitions, structures, constants,
and global variables. Examples are given to show how these elements
are used.

Notational Conventions / Related Documentation From Texas Instruments

Notational Conventions

This document uses the following conventions:

[Program listings, program examples, and interactive displays are shown
inaspecial typeface.

[In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

[0 Macro names are written in uppercase text; function names are written in
lowercase.

[0 TMS320C6000 devices are referred to throughout this reference guide as
C6201, C6202, etc.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6000 Chip Support Library API User’s Guide (literature number
SPRU401) describes the chip support library (CSL), a library dedicated
for initialization and control of the on-chip peripherals.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the 'C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port interface (HPI), multichannel buffered serial ports (McBSPs), direct
memory access (DMA), enhanced DMA (EDMA), expansion bus, clock-
ing and phase-locked loop (PLL), and the power-down modes.

How to Use This Manual

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the 'C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’'s Guide (literature number
SPRU187) describes the 'C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the 'C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C62x DSP Library (literature number SPRU402) describes the 32
high-level, C-callable, optimized DSP functions for general signal proc-
essing, math, and vector operations.

TMS320C62x Image/Video Processing Library (literature number
SPRUA400) describes the optimized image/video processing functions
including many C-callable, assembly-optimized, general-purpose
image/video processing routines.

Read This First \Y;

1

BSL Overview
Provides an overview of the board support library (BSL), describes its beneficial features, and

Contents

lists each of its APl modules.

11
12

1.3

AD535 APl Module

Provides a description of the AD535 API module, lists the individual APIs within the module,
and includes a reference section with the API functions, structures, and constants that are ap-

BSL INtrodUCHION e
BSL APIMOAUIES
1.2.1 BSL APIModule SUPPOIt e
1.2.2 Using BSLHandles
BSL Project Settingst
1.3.1 User's Program Settingt
1.3.2 Compiler OptioNnSo e
1.3.3 LINKEr OptioNS ...

plicable to this module.

AD535 APl Module DeSCriptiont
ADS35 API ReferenCeo

2.1
2.2

BOARD API Module

Provides a description of the BOARD API module, lists the individual APIs within the module,
and includes a reference section showing the API functions and constants that are applicable

to this module.

BOARD API Module DesCriptiono
BOARD APl ReferenCe

3.1
3.2

BSL API Module
Provides a description of the BSL API module and includes a reference section showing the

single API function within this module.

BSL APl Module DesCriptionottt et
BSL APl REIGIENCE . ..t

4.1
4.2

1-2

1-3

1-3

1-4

1-5

1-5

1-5

1-5

2-2

2-3

3-2

3-3

4-2

4-3

Vii

Contents

5

A

viii

DIP APIL ModUIe . ..

Provides a description of the DIP APl module, lists the individual APIs within the module, and
includes a reference section showing the single API function and constant within this module.

5.1 DIP API Module DeSCIIPiONt

5.2 DIP APl REIEIENCE . . . o ottt e e e

FLASH API Module e e e e e
Provides a description of the FLASH APl module, lists the individual APIs within the module,
and includes a reference section showing the API functions and constants that are applicable
to this module.

6.1 FLASH API Module DescCription e

6.2 FLASH APl ReferenCe e e e

LED AP MOAUIE .o
Provides a description of the LED API module, lists the individual APIs within the module, and
includes a reference section showing the API functions and constants that are applicable to this
module.

7.1 LED API Module DeSCriptiont e e

7-2

7.2 LED API REfEIENCE . . it e e e e

7-3

Gl AN ottt e

WN R R

A

~N o Ol

PR RRPRPONPR

Tables

.BSL Modules and Include Files e
. BSL Support Library Name and Symbol Conventionsc.ciiiiiian....
. BSL API Module Support for 6711 DSK i
L ADS35 APL SUMMAIY .« . ottt et e e e e e e e e e
.BOARD API SUMMANY . . .ottt et e e e e e e e e e e e e e e e
CBSL AP FUNCHON . o
CDIP APL SUMMANY .o
CFLASH APL SUMMAAIY . oo e e e e e e e
CLED APL SUMMaANY . .o e e e

Contents

Chapter 1

BSL Overview

This chapter provides an overview of the board support library (BSL), de-
scribes its beneficial features, and lists each of its APl modules.

Topic Page
1.1 BSLINtroduCtionottt 1-2
1.2 BSLAPIMOAUIES ...t |1-3
1.3 BSL Project Settingsc.uiiiiii 1-5

1-1

BSL Introduction

1.1 BSL Introduction

The BSL provides a C-language interface for configuring and controlling all on-
board devices. The library consists of discrete modules that are built and ar-
chived into a library file. Each module represents an individual APl and is re-
ferred to simply as an API module. The module granularity is architected such
that each device is covered by a single API module except the 1/O Port Module,
which is divided into two API modules: LED and DIP.

How The BSL Benefits You

The BSL's beneficial features include device ease of use, shortened develop-
ment time, portability, hardware abstraction, and a level of standardization and
compatibility among devices. In general, the BSL makes it easier for you to get
your algorithms up and running in the shortest length of time.

BSL APl Modules

1.2 BSL API Modules

For each on-board device, one header file and one source file will be gener-
ated with the following names: bsl_device.h and bsl_device.c.

Also, a library will be built for a given board:
i.e: bsl6711dsk.lib
Note : The soource files.c are archived into a single source file bsl.src.

Table 1-1 provides a current list of BSL API Modules.

Table 1-1. BSL Modules and Include Files

Board Module Support

Module Description Include File Symbol

BSL Top-level module: Initialization of the BSL bsl_bsl.h BSL_init

BOARD Board-specific module — can call CSL at run- bsl_board.h BOARD_SUPPORT
time

AD535 Audio codec module (C6711 DSK) bsl_ad535.h AD535_SUPPORT

DIP Dip switches module bsl_dip.h DIP_SUPPORT

FLASH Flash ROM module bsl_flash.h FLASH_SUPPORT

LED LED module bsl_led.h LED_SUPPORT

Interdependencies

Although each API module is unique, there exists some interdependency be-
tween the CSL (Chip Support Library) and BSL modules. For example, the
AD535 module depends on the MCBSP module because MCBSPO is dedi-
cated to serial communication.

1.2.1 BSL API Module Support

Not all API modules are supported on all boards. For example, the AIC10 mod-
ule is not supported on the C6711 DSK because the board does not have an
AIC10 codec. When an API module is not supported, all of its header file infor-
mation is conditionally compiled out, meaning the declarations will not exist.
Because of this, calling an AIC10 API function on a board that does not support
AIC10 results in a compiler and/or linker error.

Note: AIC10 codec is implemented on C5510evm.

BSL Overview 1-3

BSL API Modules

6711 DSK Module Support

Table 1-3 shows which board each APl module is supported on. Currently, all
modules described in the following chapters are supported by the C6711 DSK.
In the future, more APIs supported by other platforms will be added to the BSL.

Table 1-2. BSL Support Library Name and Symbol Conventions
Board BSL library BSL Symbol CSL library CSL symbol

6711DSK bsl6711.lib BOARD_6711DSK csl6711.lib CHIP_6711

Table 1-3. BSL API Module Support for 6711 DSK

Module 6711 DSK
AD535 X
BOARD X
DIP X
FLASH X
LED X

1.2.2 Using BSL Handles

Handles are required for devices present more than once. For example, only
one AD535 codec is implemented on-board and associated with mcbspO;
however, you can use a second AD535 implemented on a daughter board and
make data transfers through mcbsp1.

BSL Project Settings

1.3 BSL Project Settings

1.3.1 User’s Program Setting

Due to the interdependancies between CSL and BSL, the CSL is initialized by
calling the CSL_i ni t () function followed by the BSL initialization function,
BSL_init().

Also, the two header files <csl.h> and <bsl.h> have to be included in your pro-
gram in order for you to have access to the BSL APlIs.

1.3.2 Compiler Options

In the Compiler Option window, the Chip and Board symbols have to be de-
fined using the —d switch. For example,

—dCHI P_6711 —dBOARD _6711DSK

Also, the paths of the “Include” folder containing the BSL and CSL header files
have to be set with the —i switch.

1.3.3 Linker Options

The paths of the CSL and BSL libraries have to be defined. The two libraries
are named, respectively, csl 6711.1i b and bsl 6711dsk. | i b.

Note: Device Identification Symbol

When using the BSL, it is up to the user to define a project-wide symbol from
a predetermined set to identify which device is being used. This board identi-
fication symbol is then used in the BSL header files to conditionally define
the support symbols. (See Section 3.2, API Reference, for more information.

BSL Overview 1-5

Chapter 2

AD535 API Module

This chapter provides a description of the AD535 APl module, lists the individ-
ual APIs within the module, and includes a reference section showing the API
functions, structures, and constants that are applicable to this module.

Topic Page
2.1 ADS535 APl Module Descriptiont 2-2
2.2 AD535 APIReference 2-5

2-1

AD535 API Module Description

2.1 ADS535 API Module Description

Table 2-1. AD535 API Summary

The AD535 module (audio codec supported by the C6711 DSK) serves as a
level of abstraction such that it works the same for all AD535s supported on
TI EVM/DSKs.

To use an AD535 device, you must first open it and obtain a device handle us-
ing AD535_open() . Once opened, use the device handle to call the other API
functions. The codec may be configured by passing an AD535_Conf i g struc-

ture to AD535_confi g() .

Syntax Type Description Page
AD535_close F Closes the AD535 module 2-5
AD535_Config S The AD535 configuration structure used to set up an 2-5
AD535 codec
AD535_config F Sets up the AD535 codec using the register value 2-6
passed in
AD535_freeMcbsp F Sets the FREE bit of an McBSP serial port to 1. 2-6
AD535_getMcbspHandle F Returns the Handle of the McBSP associated with the |2-8
codec previously opened
AD535_Id S The AD535 Identity Structure used to allocate the 2-8
Codec device and the associated McBSP
AD535_inGain F Sets the AD535's input gain
AD535_micGain F Sets the microphone preamplifier gain 2-10
AD535_modifyReg F Modifies the AD535 control registers
AD535_open F Opens an AD535 codec for use
AD535_outGain F Sets the AD535’s output gain 2-13
AD535_powerDown F Puts the AD535 in power-down mode
AD535_read F Reads received data (voice channel)
AD535_readHwi F Reads received data (voice channel) 2-14
AD535_readReg F Reads the contents of AD535 control registers
AD535_reset F Resets the AD535 2-16
AD535_SUPPORT C A compile time constant whose value is 1 if the board |2-16

supports the AD535 module

2-2

AD535 API Module Description

Syntax Type Description Page
AD535_write F Writes data to be sent 2-16
AD535_writeHwi F Writes data to be sent 2-17
AD535_writeReg F Writes to the AD535 control registers 2-17

Note: F = Function; C = Constant; S = Structure; T = Typedef

AD535 API Module 2-3

AD535 Config

2.2 AD535 API Reference

AD535 close Closes codec channel

Function Voi d AD535_cl ose(
AD535_Handl e hAD535

) il

Arguments hAD535 Handle to codec channel, see AD535_open()

Return Value none

Description This function closes a codec channel previously opened via
AD535_open(). The registers for the codec are set to their power-on
defaults.

Example AD535 cl ose(hAD535) ;

AD535_Config Configuration structure used to set up codec channel

Structure AD535 Config

Members AD535 Loopback | b_node Loopback mode:
[AD535 LOOPBACK_DISABLE
(O AD535 LOOPBACK_ANALOG
[0 AD535 LOOPBACK DIGITAL

AD535_M cGai n m c_gai n Microphone preamp gain:
(1 AD535 MICGAIN_OFF
[0 AD535 MICGAIN_ON

Float in_gain ADC input gain:
1 AD535_GAIN_MUTE
[0 AD535_GAIN_0DB
[—-36dB<=gain<=12dB
(in 1.5 dB steps)

Fl oat out_gain DAC output gain:
1 AD535_GAIN_MUTE
[0 AD535_GAIN_0DB
[—-36dB<=gain<=12dB
(in 1.5 dB steps)

AD535 API Module 2-5

AD535_config

Description

Example

This is the AD535 configuration structure used to set up a codec channel.
You create and initialize this structure and then pass its address to the
AD535_confi g() function.

AD535_Config nyConfig = {
AD535_LOOPBACK_DI SABLE,
AD535_M CGAI N_OFF,
AD535_GAl N_0DB,
AD535_GAl N_0DB

AD535_conf i g(hAD535, &myConf i g) ;

AD535_config Sets up AD535 using configuration structure

Function

Arguments

Return Value

Description

Example

Voi d AD535_confi g(
AD535_Handl e hAD535,
AD535 Config *config

);

hAD535 Handle to codec channel, see AD535_open()

Config Pointer to an initialized configuration structure, see
AD535 Config

none

Sets up the AD535 using the configuration structure. The values of the
structure are written to the AD535 control registers.

AD535 Config nyConfig = {
AD535_ L OOPBACK_DI SABLE,
AD535_M CGAI N_OFF,
AD535_GAI N_0DB,
AD535_GAI N_0DB

b
AD535_confi g(hAD535, &ryConfi g);

P DELRIIEEY Sl Sets the FREE bit of an McBSP serial port to 1

Function

Arguments

Return Value

2-6

Voi d AD535_freeMbsp(
int port

)
port McBSP port: MCBSP_DEVO, MCBSP_DEV1

none

Description

Example

AD553 freeMcbsp

Sets 1 to the FREE field of the SPCR register of the given McBSP port.
When FREE is set to 1, the serial clocks continue to run during an
emulation halt.

/* Set the FREE bit of Mbsp serial port 0 */
AD535 freeMbsp (MCBSP_DEVO) ;

AD535 API Module 2-7

AD535 getMcbspHandle

AD535 getMchsp
Handle Returns McBSP Handle

Mcbsp_Handl e AD535_get McbspHandl e(

Function

Arguments

Return Value

Description

Example

) ’
hAD535

AD535_Handl e hAD535,

Handle to codec channel, see AD535 open()

Mcbsp_handl e Handle to the opened McBSP associated to the
number of McBSP.

Returns the McBSP Handle associated with the McBSP used for AD535

communication.

Note: The Mcbsp_Handle type is defined in the Chip Suppport Library
(CSL) and created by the internal call of the MCBSP_open() function.

Mcbsp_Handl e hMcbsp;

hMcbsp = AD535_ get Handl eMcbsp(hAD535) ;

AD535_1Id Allocates codec channel

Structure

Members

2-8

AD535 1d
Typedef Struct {
Struct {
i nt ntbsp_no;
}old;
Struct {
Bool ean al | ocat ed;
MCBSP_Handl e
hl\/bbsp;
} Ooj;
} AD535 Id

The typedef structure AD535_1d includes 2
substructures such as Id and Obj
structures

The internal structure Id contains the field
mchsp_no. The member mcbsp_no
contains the number of the serial port you
wish to use.

The internal structure Obj contains the
boolean field to allocate the codec and the
McBSP handle associated with the number
of the McBSP which will be open
“mcbsp_no”.

Description

Example

AD535_Id

This AD535_1 d structure is used to allocate a codec channel. You create
and initialize this structure, then pass its address to the AD535_open()
function. Also, this structure allows you to access to the McBSP handle
through the AD535_get McbspHandl e() function after calling

AD535 open().

If you wish to use the AD535 codec implemented on C6711DSK you can
pass the predefined pointer AD535_ON_6711DSK.

The predefined pointer AD535_| ocal d associates the codec to the
mchsp0 directly. It's not necessary to define AD5635 | d poi nter.

ncbsp_no variable is set to 0 (mcbsp0)
See source file bsl_ad535.c

/* the codec of C6711DSK use the predfined pointer
AD535_ON_6711DSK*/

AD535_Handl e hAD535;

Mcbsp_Handl e hMcbsp;

hAD535 = AD535_open(AD535_ON 6711DSK) ;
hMcbhsp AD535_get Handl eMcbsp(hAD535) ;

To set up your own AD535_1d, for example:
/* set up a codec using McBSP 1 */
AD535_Handl e hAD535;

AD535_1 d nyl d;

nmyl d. 1 d. ntbsp_no = 1;

Mcbsp_Handl e hMcbspl;

hAD535 = AD535_open(*nyld);
hMcbspl = AD535_ get Handl eMcbsp(hAD535) ;

Note: You can also use the Mcbspl if you haven;t opened an AD535
handle with the predefined AD535_ON 6711DSK obj ect .

AD535 API Module 2-9

AD535 inGain

AD535 inGain Sets AD535's input gain

Function voi d AD535_i nGai n(
AD535_Handl e hAD535,
f1 oat i nGai n
);
Arguments hAD535 Handle to codec channel, see AD535_open()
i nGain ADC input gain.
Return Value none
Description Sets the AD535’s input gain.
6711 DSK

(1 AD535_GAIN_MUTE
(O AD535 _GAIN_0DB
[0 -36dB <=inGain <=12 dB (in 1.5 dB steps)

Example AD535 i nGai n (hAD535, 6.0);

AD535_micGain Sets microphone preamplifier gain

Function voi d AD535_ni cGai n(
AD535_Handl e hAD535,
AD535 McGin nmicGin

)

Arguments hAD535 Handle to codec channel, see AD535_open()
m cGi n Microphone preamplifier gain enumeration.
Return Value none
Description Sets the microphone preamplifier gain.
6711 DSK

0 AD535_MICGAIN_OFF = off, 0 dB
O AD535 MICGAIN_ON = on, 20 dB

Example AD535_mi cGai n(hAD535, AD535_M CGAI N_CFF) ;

2-10

AD535 modifyReg

Function

Arguments

Return Value

Description

Example

AD535 modifyReg

Modifies specified control register

voi d AD535_nodi f yReg(
AD535_Handl e hAD535,
AD535 Reg ad535Regi st er,

Ui nt 32 val ,
Ui nt 32 mask
)
hAD535 Handle to codec channel, see AD535_open()

ad535Reqgi st er Control register enumeration:
AD535_REG_CTRLO
AD535_REG_CTRL1
AD535_REG_CTRL2
AD535_REG_CTRL3
AD535 REG_CTRL4
AD535_REG_CTRL5

Uooood

val Value to be masked into register

mask Bit-value mask. A value of 1 sets the bit to the
corresponding value in Val; a 0 keeps the current
value of the bit.

none
Modifies the specified control register according to the bit mask (Mask)
and value (Val).

6711 DSK

Note: Only the Voice channel is available on this board. This means the
changes to control registers 0, 1, and 2 will have no effect on the
operation of the codec.

To modify the ADC voice input gain in control register 4:
AD535_nodi f yReg(hAD535, AD535_REG _CTRL4, 0x001F, 0x003F) ;

AD535 API Module 2-11

AD535 open

AD535_open Opens codec channel

Function

Arguments

Return Value

Description

Example

2-12

AD535_ Handl e AD535_open (
AD535_1d *nyld
)

nyld Pointer to an object of type AD535_1d. This object
contains the McBSP channel number and a McBSP
handle.

C6711 DSK
If you want to use the local codec, you may pass
the predefined pointer AD535 _ON _6711DSK. If you

want
to use another codec you must create your own
AD535_Id.

AD535 Handl e Handle to newly opened codec channel

Note: If the board does not support this function, it will
return the invalid handle INV.

Before a codec channel can be used, it must first be opened by this
function. Once opened, it cannot be opened again until closed. See
AD535_cl ose() .

To use the local codec:
AD535 Handl e hAD535;
hAD535 = AD535_ open(AD535 ON 6711DSK) ;

To set up your own AD535 _1d, for example:
/* set up a codec using McBSP 1 */
AD535_Handl e hAD535;

AD535 Id nyld;

nyl d. ld. nchsp_no = 1;

hAD535 = AD535_open(*nyld);

AD535 powerDown

AD535 outGain Sets AD535's output gain

Function

Arguments

Return Value

Description

Example

voi d AD535_out Gai n(
AD535_Handl e hAD535,

fl oat out Gai n
)i
hAD535 Handle to codec channel, see AD535_open()
out Gai n DAC output gain.
none

Sets the AD535’s output gain.

6711 DSK

[AD535 GAIN_MUTE

[AD535 GAIN_0DB

[0 —36 dB <=outGain <= 12 dB (in 1.5 dB steps)

AD535_out Gai n(hAD535, AD535_GAI N_0DB) ;

Enables AD535’s power-down mode

Function

Arguments
Return Value

Description

Example

voi d AD535_power Down(
AD535_Handl e hAD535

)
hAD535 Handle to codec channel, see AD535_open()

none

Enables the AD535'’s power down mode. This performs a software power
down, so the control registers retain their previous values.

AD535_power Down(hAD535) ;

AD535 API Module 2-13

AD535 read

AD535 read Returns value of ouput from ADC

Function

Arguments
Return Value
Description

Example

AD535 readHwi

Function

Arguments
Return Value

Description

Example

i nt AD535_read(
AD535_Handl e hAD535

) l
hAD535 Handle to codec channel, see AD535_open()
i nt Value returned from output of ADC.

Returns the value of the ouput from the ADC.

int val;
val = AD535_read(hAD535);

Display Code at Selected Address

int AD535_readHw (
AD535_Handl e hAD535
)

hAD535 Handle to codec channel, see AD535_open()
i nt Value returned from output of ADC.

Allows the user to read the output value of ADC. Unlike the AD535_r ead
API, it does not use polling to establish that the McBSP is ready for
another sample. Rather, it requires the McBSP to always be ready. In
other words, the AD535_readHwi routine is for use with an Interrupt
Service Routine. The fact that you arrived at an McBSP receive ISR
signifies that the McBSP is ready with another sample.

/* The function is included in the | SR associated to
McBSP recei ve event REVT */

voi d AD535 readl sr(){

U ntl1l6 val;
val = AD535 readHw (hAD535);
}

AD535_readReg Returns value of specified control register

Function

Arguments

2-14

Ui nt 32 AD535_r eadReg(
AD535_Handl e hAD535,
AD535 Reg ad535Regi st er

) ’
hAD535 Handle to codec channel, see AD535_open()

Return Value
Description

Example

AD535 readReg

ad535Regi st er Control register enumeration:

Uooood

AD535 REG_CTRLO
AD535_REG_CTRL1
AD535_REG_CTRL2
AD535_REG_CTRL3
AD535 REG_CTRL4
AD535_REG_CTRL5

U nt 32 Value of specified control register.

Returns the value of the specified control register.

Ui nt 32 control RegVal ;
control Regval = AD535 readReg(hAD535,

AD535_REG CTRL3) ;

AD535 API Module

2-15

AD535 reset

AD535 reset Asserts software reset

Function

Arguments
Return Value

Description

Example

AD535 SUPPORT

Constant

Description

Example

voi d AD535 reset (
AD535_Handl e hAD535

) y
hAD535 Handle to codec channel, see AD535_open()

none

Asserts a software reset and sets all the registers to their power-on default
values.

AD535 reset (hAD535) ;

Compile time constant

AD535_ SUPPORT

Compile time constant that has a value of 1 if the board supports the
AD535 module and 0 otherwise. You are not required to use this constant.
Currently, all devices support this module.

#i f (AD535_SUPPORT)

/* do AD535 operations */
#endi f

AD535 write Writes value to input of DAC

Function

Arguments

Return Value

Description

Example

2-16

voi d AD535 write(
AD535 Handl e hAD535,

i nt val
);
hAD535 Handle to codec channel, see AD535_open()
val Value to be written to DAC.
none

Writes value to the input of the DAC.

To read from the codec and write back the same value, use:
AD535 write(hAD535, AD535 read(hAD535));

AD535 writeReg

LRSI/ \Vrites value to input of DAC

Function

Arguments

Return Value

Description

Example

voi d AD535_writeHw (
AD535_Handl e hAD535,

int val
)
hAD535 Handle to codec channel, see AD535_open()
val Value to be written to DAC.
none

Writes value to the input of the DAC. Unlike the AD535_wri t e API, it
does not use polling to establish that the McBSP is ready to write another
sample. Rather, it requires the McBSP to already be ready. In other words,
the AD535_writeHwi is for use within an Interrupt Service Routine. The
face that you arrived at an McBSP transmit ISR signifies that the McBSP
is ready with another sample.

/* The function is included in the | SR associated to
McBSP recei ve event XEVT */

void AD535 writelsr(){

U nt val = 0x0066;

AD535_writeHw (hAD535, val);

}

PRI Writes value to specified control register

Function

Arguments

Return Value

voi d AD535 writeReg(
AD535_Handl e hAD535,

AD535_ Reg ad535Reqi st er,
Ui nt 32 val
)
hAD535 Handle to codec channel, see AD535_open()

ad535Reqgi st er Control register enumeration:
AD535_REG_CTRLO
AD535_REG_CTRL1
AD535_REG_CTRL2
AD535_REG_CTRL3
AD535_REG_CTRL4
AD535_REG_CTRL5

Uooood

val Value to be written to specified register

none

AD535 API Module 2-17

AD535 writeReg

Description

Example

2-18

Writes value to the specified control register.
6711 DSK

Note: Only the Voice channel is available on this board. This means the
changes to control registers 0, 1, and 2 will have no effect on the
operation of the codec.

/* Set up 10.5db ADC input gain and 0dB m crophone
preanmp gain in control register 4 */
AD535 writeReg(hAD535, AD535 REG CTRL4, 0x0040);

Chapter 3

BOARD API Module

This chapter provides a description of the BOARD API module, lists the individ-
ual APIs within the module, and includes a reference section showing the API
functions and constants that are applicable to this module.

Topic Page
3.1 BOARD API Module DescCription ..., 3-2
3.2 BOARD APIReferenceiiiiiiii i 3-3

3-1

BOARD API Module Description

3.1 BOARD API Module Description

The BOARD module is where we put board-specific content. This module has
the potential to grow in the future as more boards are placed on the market.
Currently, the module has some API functions for register access such as
BOARD r eadReg(), and BOARD writeReg().

A predefined symbol is associated with each EVM/DSK, for example,

BOARD 6711DSK (—d switch for compiler options setting)

Table 3—-1. BOARD API Summary

Syntax Type Description Page

BOARD_readReg F Reads a specified.BOARD memory—mapped register |3-3

BOARD_SUPPORT C A compile time constant whose value is 1 if the board |3-3
supports the BOARD module

BOARD_writeReg F Writes into a specified Board memory—mapped 3-4
register

Note: F = Function; C = Constant; S = Structure; T = Typedef

BOARD_SUPPORT

3.2 BOARD API Reference

IOV ELE Returns value of specified memory-mapped register

Function

Arguments

Return Value
Description

Example

Ui nt 32 BOARD r eadReg(
BOARD Reg boar dRegi ster

)i

boar dRegi st er Register enumeration

C6711 DSK
0 BOARD_REG_IOPORT

Ui nt 32 Returns specified register value
Returns the value of the specified memory-mapped register.

U nt 32 boar dRegVal ;
boar dRegVal = BOARD r eadReg(BOARD REG | OPORT) ;

YYD IESIV[=I=le]=g @ Compile time constant

Constant

Description

Example

BOARD_SUPPORT

Compile time constant that has a value of 1 if the board supports the
different modules via MODULE SUPPCORT constants and O otherwise. You
are not required to use this constant.

Currently, all devices support this module.

#i f (BOARD_SUPPORT)
/* do DI P operations */
#endi f

BOARD API Module 3-3

BOARD_writeReg

IOV DIV E Writes value to specified memory-mapped register

Function

Arguments

Return Value
Description

Example

3-4

voi d BOARD writeReg(
BOARD _Reg boardRegi ster,
Ui nt 32 val

)

boar dRegi st er Register enumeration

C6711 DSK
0 BOARD_REG_IOPORT

val Value to be written to specified register.
none
Writes the value to the specified memory-mapped register.

BOARD wr it eReg(BOARD REG | OPORT, 0x00000000);

Chapter 4

BSL APl Module

This chapter provides a description of the BSL APl module and includes a ref-
erence section showing the single API function within this module.

Topic Page
4.1 BSL API Module Descriptionouiiiiiiiiiiiinainnann. 4-2
4.2 BSL APIREf€reNCe . ..ot e 4-3

4-1

BSL API Module Description

4.1 BSL API Module Description

The BSL module serves to initialize the API modules supported by the
board.The following unique function has to be called before using the API func-
tions:

BSL_init ()

Table 4-1. BSL API Function

Syntax Type Description Page

BSL_init F Initializes the BSL library 4-3

Note: F = Function; C = Constant; S = Structure; T = Typedef

4-2

BSL init

4.2 BSL API Reference

BSL _init Initializes all programmable modules on board
Function void BSL init();
Arguments none
Return Value none
Description This function initializes all of the programmable modules on the board.
C6711 DSK
] AD535 Codec
] BOARD module
] DIP switch
(1 FLASH ROM
1 User LEDs
Example BSL init();

BSL API Module 4-3

Chapter 5

DIP APl Module

This chapter provides a description of the DIP APl module, lists the individual
APIs within the module, and includes a reference section showing the single
API function and constant within this module.

Topic Page
5.1 DIP APIModule DesCriptiont 5-2
5.2 DIP APl REfEreNCE .. ittt 5-3

5-1

DIP APl Module Description

5.1 DIP API Module Description

This module has the following single API for reading DIP switch positions:

Dl P_get (di p#) returns a boolean value {0,1}.

Table 5-1. DIP APl Summary

Syntax Type Description Page
DIP_get F Reads the status of the DIP switches 5-3
DIP_SUPPORT C A compile time constant whose value is 1 if the board |5-3

supports the DIP module

Note: F = Function; C = Constant; S = Structure; T = Typedef

DIP_SUPPORT

5.2 DIP API Reference

DIP_get Returns current value of specified DIP switch

Function

Arguments

Return Value

Description

Example

Ui nt 32 DI P_get (
U nt 32 di pNum

)i

di pNum Specifies which DIP switch to be read, can be one of
the following:
O DIP_1
O DIP 2
(4 DIP_3
|

Ui nt 32 Current value of the specified DIP switch.
(1 O = DIP switch position is off.
[0 1= DIP switch position is on.

Returns the current value of the specified DIP switch.

C6711 DSK

O DIP_1=USER_SW1
0 DIP_2=USER_SW2
0 DIP_3=USER_SW3

U nt 32 val;
val = DIP_get(DP_1);

DIP_SUPPORT Compile time constant

Constant

Description

Example

DI P_SUPPORT

Compile time constant that has a value of 1 if the board supports the DIP
module and 0 otherwise. You are not required to use this constant.
Currently, all devices support this module.

#i f (Dl P_SUPPORT)

/* do DI P operations */
#endi f

DIP API Module 5-3

Chapter 6

FLASH API Module

This chapter provides a description of the FLASH API module, lists the individ-
ual APIs within the module, and includes a reference section showing the API
functions and constants that are applicable to this module.

Topic Page
6.1 FLASH API Module Descriptionccoiiiiiiiinainn... 6-2
6.2 FLASHAPIReferenceoiiiiiii i 6-3

6-1

FLASH API Module Description

6.1 FLASH API Module Description

The FLASH module allows access to on-board flash and executes data
memory manipulation by using the following three functions:

FLASH read(), FLASH wite() and FLASH erase()

For the 6711 DSK, the 128KB FLASH is split into 128 bytes per page.

Table 6-1. FLASH APl Summary

Syntax Type Description Page

FLASH_checksum F Returns the check sum 6-3

FLASH_erase F Erases the specific segment of the flash and/or erases
the full flash

FLASH_read F Reads the Flash data and copies it to a specified 6-5
destination buffer

FLASH_SUPPORT C A compile time constant whose value is 1 if the board
supports the FLASH module

FLASH_write F Writes to Flash data from a specified source buffer

Note: F = Function; C = Constant; S = Structure; T = Typedef

FLASH checksum

6.2 FLASH API Reference

SISO S Iyl Returns checksum of specified Flash data

Function

Arguments

Return Value

Description

Example

Ui nt 32 FLASH checksun{
Ui nt 32 | ocat or,
Ui nt32 length

)

| ocat or Addressing and page information for location in Flash
memory.

C6711 DSK

[0 FLASH_START ADDR

[0 FLASH_PAGE_ADDR(X) :(X)— page number
] 32-bit FLASH address

I ength Length in bytes of data to be read. This is limited by the
size of the Flash memory.

U nt 32 Returns the value of the specified checksum

Returns the checksum of the specified Flash data. Checksum calculated
by byte by byte addition.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

C6711 DSK
] locator contains 32-bit address of Flash location
(JFLASH_START_ADDR is 0x9000000

(] Flash address range: 0x90000000 to 0x90020000
(1 FLASH_PAGE_SIZE = 0x80: 128 bytes
(1 Page number range x: 0to 1023

JFLASH_PAGE_ADDR(x) = FLASH_START_ADDR +
x*FLASH_PAGE_SIZE)

Note: On 5x boards, 16-bit addressing is used and page information is
included in the upper half-word of the address argument.

To get the checksum of page 0 and 1, use:

U nt32 start Addr = FLASH PAGE ADDR(0);

U nt32 | ength = FLASH PAGE_SI ZE * 2;

Ui nt 32 checksum

checksum = FLASH checksun(startAddr, | ength);

FLASH API Module 6-3

FLASH erase

FLASH_erase Erases specified segment of Flash memory
Function voi d FLASH erase(

U nt 32 | ocator,
Ui nt32 |l ength

)i

Arguments | ocat or Addressing and page information for location in Flash
memory.

C6711 DSK

(1 FLASH_START_ADDR

(1 FLASH_PAGE_ADDR(x) :(x)— page number
(1 32-bit Flash address

Il ength Length in bytes of data to be erased. This is limited by
the size of the Flash memory.

C6711 DSK
[length in bytes
(1 FLASH ERASE_ALL - erase entire FLASH

Return Value none

Description Erases the specified segment of Flash memory.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

C6711 DSK
[J locator contains 32-bit address of Flash location
[OJFLASH_START_ADDR is 0x9000000

(1 Flash address range: 0x90000000 to 0x90020000
(10 FLASH_PAGE_SIZE = 0x80: 128 bytes
[0 Page number range: 0 to 1023

JFLASH_PAGE_ADDR(x) = FLASH_START_ADDR +
x*FLASH_PAGE_SIZE)

Note: On 5x boards, 16-bit addressing is used and page information is
included in the upper half-word of the address argument.

Example To erase page # 0 and # 1 in the Flash:
FLASH er ase(FLASH_PAGE_ADDR(0), FLASH PAGE_SI ZE*2);

To erase the entire FLASH:
FLASH erase(0, FLASH ERASE ALL);

Note: When erasing the entire Flash memory, the | ocat or argument
becomes a dummy parameter.

6-4

FLASH_ read

FLASH_read Reads data from FLASH address

Function

Arguments

Return Value

Description

Example

voi d FLASH read(
Ui nt 32 | ocator,
U nt 32 dst,
Ui nt32 length

)

| ocat or Addressing and page information for location in Flash
memory.

C6711 DSK

(1 FLASH_START_ADDR

(1 FLASH_PAGE_ADDR(x) :(x)— page number
] 32-bit FLASH address

dst Destination address

| ength Length in bytes of data to be read. This is limited by the
size of the Flash memory.

none

Reads data from the FLASH address (locator) and copies it to a
destination address (dst). This function is limited only by the length of the
FLASH memory.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

C6711 DSK

] locator contains 32-bit address of Flash location
[JFLASH_START_ADDR is 0x9000000

(1 Flash address range: 0x90000000 to 0x90020000
(0 FLASH_PAGE_SIZE = 0x80: 128 hytes
(] Page number range: 0 to 1023

JFLASH_PAGE_ADDR(X) = FLASH_START_ADDR +
X*FLASH_PAGE_SIZE)

To read from pages 0 and 1 to readBuffer:
char readBuffer[FLASH PAGE_SI ZE* 2] ;
FLASH r ead(FLASH_PAGE_ADDR(0),
(Ui nt 32) readBuf fer,
FLASH PAGE_SI ZE * 2);

FLASH API Module 6-5

FLASH_SUPPORT

WX SISV elg@ Compile time constant

Constant

Description

Example

FLASH_SUPPORT

Compile time constant that has a value of 1 if the board supports the
FLASH module and 0 otherwise. You are not required to use this constant.

Currently, all devices support this module.
#i f (FLASH_SUPPORT)

/* do FLASH operations */
#endi f

FLASH_write Writes data to Flash address

Function

Arguments

Return Value

6-6

int FLASH write(
U nt32 src,
U nt 32 | ocator,
U nt32 length

)

src Source address

| ocat or Addressing and page information for location in Flash
memory.
C6711 DSK

(1 FLASH_START_ADDR
(1 FLASH_PAGE_ADDR(X) :(x)— page number
(] 32-bit FLASH address

[ength Length in bytes of data to be written. This is limited by
the size of the Flash memory.

none

Description

Example

FLASH write

Writes data to the Flash address (locator) from a source address (src).
This function is limited by the page length of the Flash memory.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

C6711 DSK
] Locator contains 32-bit address of Flash location
[JFLASH_START_ADDR is 0x9000000

(] Flash address range: 0x90000000 to 0x90020000
(1 FLASH_PAGE_SIZE = 0x80: 128 bytes

(0 Page number range: 0 to 1023
(JFLASH_PAGE_ADDR(x) = FLASH_START_ADDR +
x*FLASH_PAGE_SIZE)

(1 If the source address begins in the middle of a page, the write will
invalidate all other data on the page.

To write from writeBuffer to pages 1 and 2:

char writeBuffer[FLASH PAGE_SI ZE* 2] ;

FLASH write((U nt32)witeBuffer,
FLASH_PAGE_ADDR(1),
FLASH PAGE_SI ZE * 2);

FLASH API Module 6-7

Chapter 7

LED API Module

This chapter provides a description of the LED API module, lists the individual
APIs within the module, and includes a reference section showing the API
functions and constants that are applicable to this module.

Topic Page
7.1 LED API Module Descriptioniuuiiiieiiiinannnn 7-2
7.2 LED APIREferencet 7-3

7-1

LED API Module Description

7.1 LED API Module Description

This module has a simple API for configuring on-board LED outputs. Three
states can be set by the following functions:

(0 LED on(l ed#)
[LED of f (I ed#)

(1 LED toggl e(l ed#)

Table 7-1. LED API Summary

Syntax Type Description Page
LED_off F Turns off the specified LED 7-3
LED_on F Turns on the specified LED
LED_SUPPORT C A compile time constant whose value is 1 if the board |7-4

supports the LED module

LED_toggle F Toggles the specified LED 7-4

Note: F = Function; C = Constant; S = Structure; T = Typedef

7-2

LED on

7.2 LED API Reference

LED_off Turns off specified LED
Function voi d LED of f(

Ui nt 32 LedNum
)

Arguments LedNum Specifies which LED to be turned off. Can be one of
the following:
(] LED 1
(] LED 2
(] LED 3
4
Return Value none
Description Turns off the specified LED.
C6711 DSK

O LED_1=USER_LED1
O LED 2 =USER_LED2
O LED_3=USER_LED3
0 LED_ALL = all user LEDs

Example If you want to turn off LED # 1 use:
LED of f (LED 1);

Turns on specified LED
Function voi d LED on(

Ui nt 32 LedNum
)

Arguments LedNum Specifies which LED to be turned on. Can be one of
the following:
(O LED_1
(O LED_2
(1 LED_3
EI

Return Value none

LED API Module 7-3

LED_SUPPORT

Description

Example

Turns on the specified LED.

C6711 DSK

(] LED_1=USER_LED1

[LED _2=USER_LED2

(1 LED_3=USER_LEDS3

[LED_ALL = all user LEDs

If you want to turn on LED # 1 use:
LED on(LED_1);

LED_SUPPORT Compile time constant

Constant

Description

Example

LED_SUPPORT

Compile time constant that has a value of 1 if the board supports the LED
module and 0 otherwise. You are not required to use this constant.
Currently, all devices support this module.

#i f (LED_SUPPORT)

/* do LED operations */
#endi f

Toggles specified LED

Function

Arguments

Return Value

Description

Example

voi d LED_ t oggl e(
U nt 32 LedNum

)

LedNum Specifies which LED to be toggled, can be one of the
following:
O LED 1
[LED 2
(1 LED_3
a

none

Toggles the specified LED.

C6711 DSK

(O LED_1=USER_LED1

(1 LED_2=USER_LED2

(O LED_3=USER_LED3

(1 LED_ALL = all user LEDs

If you want to toggle LED # 1 use:
LED t oggl e(LED_1);

Appendix A

Glossary

AD535: The audio codec APl module. Currently supported by the
6711 DSK.

address: The location of program code or data stored; an individually
accessible memory location.

A-law companding: See compress and expand (compand).
API: See application programming interface.
APl module: A set of API functions designed for a specific purpose.

application programming interface (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions, direc-
tives, and macros. The assembler substitutes absolute operation codes
for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it.

bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also little endian.

A-1

Glossary

A-2

block: The three least significant bits of the program address. These corre-
spond to the address within a fetch packet of the first instruction being
addressed.

BOARD: The BOARD-specific APl Module.

board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals.

boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
C6x DSP supports booting from external ROM or the host port interface
(HPI).

BSL: See board support library.

byte: A sequence of eight adjacent bits operated upon as a unit.

cache: A fast storage buffer in the central processing unit of a computer.

cache module: CACHE is an APl module containing a set of functions for
managing data and program cache.

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

CCS: Code Composer Studio.

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the genera-
tion of data- and program-memory addresses. The CPU includes the
central arithmetic logic unit (CALU), the multiplier, and the auxiliary regis-
ter arithmetic unit (ARAU).

CHIP: See CHIP module.

CHIP module: The CHIP module is an APl module where chip-specific and
device-related code resides. CHIP has some API functions for obtaining
device endianess, memory map mode if applicable, CPU and REV IDs,
and clock speed.

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals.

Glossary

clock cycle: A periodic or sequence of events based on the input from the
external clock.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

code: A set of instructions written to perform a task; a computer program or
part of a program.

codec: Coder-decoder, or compression/decompression. A device that
codes in one direction of transmission and decodes in another direction
of transmission.

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

compress and expand (compand): A quantization scheme for audio sig-
nals in which the input signal is compressed and then, after processing,
is reconstructed at the output by expansion. There are two distinct com-
panding schemes: A-law (used in Europe) and p-law (used in the United
States).

constant: A fixed or invariable value or data item that can be used as an op-
erand.

control register: A register that contains bit fields that define the way a de-
vice operates.

control register file: A set of control registers.
CSL: See chip support library.

CSL module: The CSL module is the top-level CSL APl module.lt interfaces
to all other modules and its main purpose is to initialize the CSL library.

DAT: Data; see DAT module.

DAT module: The DAT is an API module that is used to move data around
by means of DMA/EDMA hardware. This module serves as a level of ab-
straction that works the same for devices that have the DMA or EDMA
peripheral.

Glossary A-3

Glossary

device ID: Configuration register that identifies each peripheral component
interconnect (PCI).

digital signal processor (DSP): A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

DIP: The DIP Switches APl Module.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host.

DMA : See direct memory access.

DMA module: DMA is an APl module that currently has two architectures
used on C6x devices: DMA and EDMA (enhanced DMA). Devices such
as the 6201 have the DMA peripheral, whereas the 6211 has the EDMA
peripheral.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to destina-
tion).

DSK: Digital signal processor (DSP) starter kit. Tools and documentation
provided to new DSP users to enable rapid use of the product.

EDMA: Enhanced direct memory access; see EDMA module.

EDMA module: EDMA is an API module that currently has two architectures
used on C6x devices: DMA and EDMA (enhanced DMA). Devices such
as the 6201 have the DMA peripheral, whereas the 6211 has the EDMA
peripheral.

EMIF: See external memory interface; see also EMIF module.

EMIF module: EMIF is an API module that is used for configuring the EMIF
registers.

evaluation module (EVM): Board and software tools that allow the user to
evaluate a specific device.

Glossary

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory.

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary.

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

FLASH: The FLASH ROM API Module.

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the re-
quested fetch packet. The cache contains 512 frames.

global interrupt enable bit (GIE): A bit in the control status register (CSR)
that is used to enable or disable maskable interrupts.

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A parallel interface that the CPU uses to commu-
nicate with a host processor.

HPI: See host port interface; see also HPI module.

HPI module: HPIis an APl module used for configuring the HPI registers.
Functions are provided for reading HPI status bits and setting interrupt
events.

index: A relative offset in the program address that specifies which of the
512 frames in the cache into which the current access is mapped.

Glossary A-5

Glossary

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

internal peripherals: Devices connected to and controlled by a host device.
The C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port inter-
face (HPI), external memory-interface (EMIF), and runtime support tim-
ers.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP).

interrupt service routine (ISR): A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt service table (IST) A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it.

IRQ: Interrupt request; see IRQ module.
IRQ module: IRQ is an APl module that manages CPU interrupts.

IST: See interrupt service table.

least significant bit (LSB): The lowest-order bit in a word.
LED: The LED API Module.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

Glossary

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

p-law companding: See compress and expand (compand).

maskable interrupt: A hardware interrupt that can be enabled or disabled
through software.

MCBSP: See multichannel buffered serial port; see also MCBSP module.

MCBSP module: MCBSP is an APl module that contains a set of functions
for configuring the McBSP registers.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

most significant bit (MSB): The highest order bit in a word.

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

nonmaskable interrupt (NMI): An interrupt that can be neither masked nor
disabled.

object file: A file that has been assembled or linked and contains machine
language object code.

off chip: A state of being external to a device.

on chip: A state of being internal to a device.

Glossary A-7

Glossary

peripheral: A device connected to and usually controlled by a host device.

program cache: A fast memory cache for storing program instructions al-
lowing for quick execution.

program memory: Memory accessed through the C6x’s program fetch in-
terface.

PWR: Power; see PWR module.

PWR module: PWR is an APl module that is used to configure the power-
down control registers, if applicable, and to invoke various power-down
modes.

random-access memory (RAM): A type of memory device in which the
individual locations can be accessed in any order.

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of micro-
programmed complex instruction set computers. The result is a higher
instruction throughput and a faster real-time interrupt service response
from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RTOS Real-time operating system.

structure: A collection of one or more variables grouped together under a
single name.

synchronous-burst static random-access memory (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

Glossary

synchronous dynamic random-access memory (SDRAM): RAM whose
contents is refreshed periodically so the data is not lost. Transfer of data
is at a fixed rate relative to the clock speed of the device.

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries.

tag: The 18 most significant bits of the program address. This value corre-
sponds to the physical address of the fetch packet that is in that frame.

timer: A programmable peripheral used to generate pulses or to time
events.

TIMER module: TIMER is an APl module used for configuring the timer reg-
isters.

word: A multiple of eight bits that is operated upon as a unit. For the ‘C6x,
a word is 32 bits in length.

Glossary A-9

AD535 API mod

API constant,
AD535_SUPPORT,

API functions
AD535_close,
AD535_config,
AD535_getMcbspHandle,[2-8]
AD535_inGain,
AD535_micGain,|[2-10 |

AD535 modi
AD535_open,
AD535_outGain,

AD535_powerDown,

AD535_read,|2-14 |
AD535_readReg,
ADS35_reset,
AD535_write,|
AD535_writeReg,
API structures
AD535_Config,|2-5
AD535_|d,|ﬁ
API summary table,[2-2 |
description,

BOARD API module,[3-1
API constant,[3-3 |
BOARD_SUPPORT,[3-3]

API functions)
BOARD_readReg,|
BOARD_writeReg,|3-4

APl summary table,|3-2
description,

board support library (BSL)
6711 DSK module support,

Index

Index

API module support,
API module support for 6711 DSK, table,
API modules,
device identification symbol, note regarding,
how the BSL benefits you,
interdependencies,
introduction,
modules and include files, table,
overview,
project settings,

BSL API module,
API function,

BSL_init,

description,
function table,

device identification symbol, note regarding,[1-5 |
DIP APl module,|5-1
API constant,|5-3

DIP_SUPPORT,|5-3
API function, DIP_get,
AP| summary table,

description,

FLASH API mod

API constant,
FLASH_SUPPORT,[6-6 |

API functions ‘
FLASH_checksum,|6-3
FLASH_erase,|6-4
FLASH_read,
FLASH_write,[6-6 |

description,
AP| summary table,

Index-1

Index

LED API module,
API constant,
LED_SUPPORT,[7-4]

Index-2

API functions

LED_off,
LED_on,

7-3

7-3

LED_toggle,|7-4
AP| summary table,
description,[7-2]

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments

	Contents
	Tables
	BSL Overview
	BSL Introduction
	How The BSL Benefits You

	BSL API Modules
	Interdependencies
	BSL API Module Support
	6711 DSK Module Support
	Using BSL Handles

	BSL Project Settings
	User’s Program Setting
	Compiler Options
	Linker Options

	AD535 API Module
	AD535 API Module Description
	AD535 API Reference
	AD535_close
	AD535_Config
	AD535_config
	AD553_freeMcbsp
	Ad535_getMcbspHandle
	AD535_Id
	AD535_inGain
	AD535_micGain
	AD535_modifyReg
	AD535_open
	AD535_outGain
	AD535_powerDown
	AD535_read
	AD535_readHwi
	AD535_readReg
	AD535_reset
	AD535_SUPPORT
	AD535_write
	AD535_writeHwi
	AD535_writeReg

	BOARD API Module
	BOARD API Module Description
	BOARD API Reference
	BOARD_readReg
	BOARD_SUPPORT
	BOARD_writeReg

	BSL API Module
	BSL API Module Description
	BSL API Reference
	BSL_init

	DIP API Module
	DIP API Module Description
	DIP API Reference
	DIP_get
	DIP_SUPPORT

	FLASH API Module
	FLASH API Module Description
	FLASH API Reference
	FLASH_checksum
	FLASH_erase
	FLASH_read
	FLASH_SUPPORT
	FLASH_write

	LED API Module
	LED API Module Description
	LED API Reference
	LED_off
	LED_on
	LED_SUPPORT
	LED_toggle

	Glossary
	Index

