
TMS320C62x DSP Library
Programmer’s Reference

Literature Number SPRU402
March 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

Welcome to the TMS320C62x digital signal processor (DSP) Library, or
DSPLIB for short. The DSPLIB is a collection of 32 high-level optimized DSP
functions for the TMS320C62x device. This source code library includes C-
callable functions (ANSI-C language compatible) for general signal process-
ing math and vector functions.

This document contains a reference for the DSPLIB functions and is organized
as follows:

� Overview – an introduction to the TI ’62x DSPLIB
� Installation – information on how to install and rebuild DSPLIB
� DSPLIB Functions – a quick reference table listing of routines in the library
� DSPLIB Reference – a description of all DSPLIB functions complete with

calling convention, algorithm details, special requirements and imple-
mentation notes.

� Information about performance, Fractional Q format, warranty, and sup-
port

How to Use This Manual

The information in this document describes the contents of the TMS320C62x
DSPLIB in several different ways.

� Chapter 1 provides a brief introduction to the TI ’62x DSPLIB, shows the
organization of the routines contained in the library, and lists the features
and benefits of the DSPLIB.

� Chapter 2 provides information on how to install, use, and rebuild the TI
’C62x DSPLIB

� Chapter 3 provides a quick overview of all DSPLIB functions in table for-
mat for easy reference. The information shown for each function includes
the syntax, a brief description, and a page reference for obtaining more
detailed information.

How to Use This Manual

iv

� Chapter 4 provides a list of the routines within the DSPLIB organized into
functional categories. The functions within each category are listed in al-
phabetical order and include arguments, descriptions, algorithms, bench-
marks, and special requirements.

� Appendix A describes performance considerations related to the ’62x
DSPLIB and provides information about the Q format used by DSPLIB
functions.

� Appendix B provides information about warranty issues, software up-
dates, and customer support.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface .

� In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

� Macro names are written in uppercase text; function names are written in
lowercase.

� The TMS320C62x is also referred to in this reference guide as the ’C62x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

Notational Conventions / Related Documentation From Texas Instruments

How to Use This Manual

vRead This First

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/6701 digital signal processors. This book includes in-
formation on the internal data and program memories, the external
memory interface (EMIF), the host port interface (HPI), multichannel
buffered serial ports (McBSPs), direct memory access (DMA), enhanced
DMA (EDMA), expansion bus, clocking and phase-locked loop (PLL),
and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6000 Chip Support Library (literature number SPRU401)
describes the application programming interfaces (APIs) used to config-
ure and control all on-chip peripherals.

TMS320C62x Image/Video Processing Library (literature number
SPRU400) describes the optimized image/video processing functions
including many C-callable, assembly-optimized, general-purpose
image/video processing routines.

Contents

vii

Contents

1 Introduction 1-1.
Provides an introduction to the TI ’C62x DSPLIB, shows the organization of the routines con-
tained in the library, and explains the features and benefits of the DSPLIB.

1.1 Introduction to the TI ’62x DSPLIB 1-2.
1.2 Features and Benefits 1-4.

2 Installing and Using DSPLIB 2-1.
Provides information on how to install and rebuild the TI ’C62x DSPLIB.

2.1 How to Install DSPLIB 2-2.
2.2 Using DSPLIB 2-4.

2.2.1 DSPLIB Arguments and Data Types 2-4.
2.2.2 Calling a DSPLIB Function From C 2-5.
2.2.3 Calling a DSP Function From Assembly 2-5.
2.2.4 How DSPLIB is Tested – Allowable Error 2-6.
2.2.5 How DSPLIB Deals With Overflow and Scaling Issues 2-6.

2.3 How to Rebuild DSPLIB 2-6.

3 DSPLIB Function Tables 3-1.
Provides tables containing all DSPLIB functions, a brief description of each, and a page refer-
ence for more detailed information.

3.1 Arguments and Conventions Used 3-2.
3.2 DSPLIB Functions 3-3.
3.3 DSPLIB Function Tables 3-3.

4 DSPLIB Reference 4-1.
Provides a list of the functions in the DSP library (DSPLIB) organized into functional catagories.

4.1 Adaptive Filtering 4-2.
4.2 Correlation 4-4.
4.3 FFT 4-6.
4.4 Filtering and Convolution 4-14.
4.5 Math 4-27.
4.6 Matrix 4-40.
4.7 Miscellaneous 4-43.

Contents

viii

A Performance/ Fractional Q Formats A-1.
Describes performance considerations related to the ’62x DSPLIB and provides information
about the Q format used by DSPLIB functions.

A.1 Performance Considerations A-2.
A.2 Fractional Q Formats A-2.

A.2.1 Q3.12 Format A-2.
A.2.2 Q.15 Format A-3.
A.2.3 Q.31 Format A-3.

B Warranty and Support B-1.
Provides information about warranty issues, software updates, and customer support.

B.1 Warranty B-2.
B.2 DSPLIB Software Updates B-2.
B.3 DSPLIB Customer Support B-2.

C Glossary C-1.
Defines terms and abbreviations used in this book.

Tables

ixContents

Tables

2–1 DSPLIB Data Types 2-4.
3–1 Argument Conventions 3-2.
3–2 Adaptive Filtering 3-3.
3–3 Correlation 3-3.
3–4 FFT 3-3.
3–5 Filtering and Convolution 3-4.
3–6 Math 3-4.
3–7 Matrix 3-5.
3–8 Miscellaneous 3-5.
A–1 Q3.12 Bit Fields A-2.
A–2 Q.15 Bit Fields A-3.
A–3 Q.31 Low Memory Location Bit Fields A-3.
A–4 Q.31 High Memory Location Bit Fields A-3.

1-1

Introduction

This chapter provides a brief introduction to the TI ’62x DSP Library (DSPLIB),
shows the organization of the routines contained in the library, and lists the fea-
tures and benefits of the DSPLIB.

Topic Page

1.1 Introduction to the TI ’C62x DSPLIB 1-2.

1.2 Features and Benefits 1-4.

Chapter 1

Introduction to the TI ’62x DSPLIB

 1-2

1.1 Introduction to the TI ’62x DSPLIB

The TI ’C62x DSPLIB is an optimized DSP Function Library for C programmers
using TMS320C62x devices. It includes many C-callable, assembly-opti-
mized, general-purpose signal-processing routines. These routines are typi-
cally used in computationally intensive real-time applications where optimal
execution speed is critical. By using these routines, you can achieve execution
speeds considerably faster than equivalent code written in standard ANSI C
language. In addition, by providing ready-to-use DSP functions, TI DSPLIB
can significantly shorten your DSP application development time.

The TI DSPLIB includes commonly used DSP routines. Source code is pro-
vided that allows you to modify functions to match your specific needs.

The routines contained in the library are organized into the following seven dif-
ferent functional categories:

� Adaptive filtering

� firlms2

� Correlation

� autocor

� FFT

� bitrev_cplx

� radix 2

� r4fft

� Filtering and convolution

� fir_cplx

� fir_gen

� fir_r4

� fir_r8

� fir_sym

� iir

� iir_cas4

� lat_fwd

� lat_inv

Introduction to the TI ’62x DSPLIB

1-3Introduction

� Math

� dotp_sqr

� dotprod

� maxval

� maxidx

� minval

� mul32

� neg32

� recip16

� vecsumsq

� w_vec

� Matrix

� mmul

� mat_trans

� Miscellaneous

� bexp

� blk_move

� fltoq15

� minerror

� q15tofl

� v_srch

Features and Benefits

 1-4

1.2 Features and Benefits

� Hand-coded assembly-optimized routines

� C-callable routines, fully compatible with the TI ’C6x compiler

� Fractional Q15-format operands supported on some benchmarks

� Benchmarks (time and code)

� Tested against C model

NOTE: Although the code provided in this software release has been opti-
mized for the TI ’C62x DSP, it will also be operational on other members of the
TI ’C6000 DSP family as new devices are made available.

2-1

Installing and Using DSPLIB

This chapter provides information on how to install and rebuild the TI ’C62x
DSPLIB.

Topic Page

2.1 How to Install DSPLIB 2-2.

2.2 Using DSPLIB 2-4.

2.3 How to Rebuild DSPLIB 2-6.

Chapter 2

How to Install DSPLIB

 2-2

2.1 How to Install DSPLIB

Note:

You should read the README.txt file for specific details of the release.

The archive has the following structure:

dsp62x.zip

 |

 +–– README.txt Top–level README file

 |

 +–– lib

 | |

 | +–– dsp62x.lib Library archive

 | +–– dsp62x.src Full source archive
(asm and headers)

 |

 +–– include

 | |

 | +–– header files Unpacked header files

 +–– doc

 |

 +–– dsp62xlib.pdf pdf document of API

Step 1: De-archive DSPLIB

The lib directory contains the library archive and the source archive. Please
install the contents of the lib directory in a directory pointed by your C_DIR en-
vironment. If you choose to install the contents in a different directory, make
sure you update the C_DIR environment variable, for example, by adding the
following line in autoexec.bat file:

SET C_DIR=<install_dir>/lib;<install_dir>/include;%C_DIR%

or under Unix/csh:

setenv C_DIR ”<install_dir>/lib;<install_dir>/include;
$C_DIR”

or under Unix/Bourne Shell:

C_DIR=”<install_dir>/lib;<install_dir>/include;$C_DIR”;
export C_DIR

How to Install DSPLIB

2-3Installing and Using DSPLIB

Code Composer Studio Users

If you set up a project under Code Composer Studio, you could add DSPLIB
by choosing dsp62x.lib from the menu Project –> Add Files to Project. Also,
you should make sure that you link with the correct run-time support library and
DSPLIB by having the following lines in your linker command file:

–lrts6201.lib

–ldsp62x.lib

The include directory contains the header files necessary to be included in the
C code when you call a DSPLIB function from C code.

Using DSPLIB

 2-4

2.2 Using DSPLIB

2.2.1 DSPLIB Arguments and Data Types

DSPLIB Types

Table 2–1 shows the data types handled by the DSPLIB.

Table 2–1. DSPLIB Data Types

Name
Size
(bits) Type Minimum Maximum

short 16 integer –32768 32767

int 32 integer –2147483648 2147483647

long 40 integer –549755813888 549755813887

pointer 32 address 0000:0000h FFFF:FFFFh

Q15 16 fraction –0.9999694824... 0.9999694824...

Q31 32 fraction –0.99999999953... 0.99999999953...

IEEE float 32 floating point 1.17549435e–38 3.40282347e+38

IEEE double 64 floating point 2.2250738585072014e–308 1.7976931348623157e+308

Unless specifically noted, DSPLIB operates on Q15-fractional data type ele-
ments. Appendix A presents an overview of Fractional Q formats.

DSPLIB Arguments

TI DSPLIB functions typically operate over vector operands for greater effi-
ciency. Even though these routines can be used to process short arrays, or
even scalars (unless a minimum size requirement is noted), they will be slower
for these cases.

� Vector stride is always equal to 1: Vector operands are composed of vector
elements held in consecutive memory locations (vector stride equal to 1).

� Complex elements are assumed to be stored in consecutive memory loca-
tions with Real data followed by Imaginary data.

� In-place computation is allowed (unless specifically noted): Source oper-
and can be equal to destination operand to conserve memory.

Using DSPLIB

2-5Installing and Using DSPLIB

2.2.2 Calling a DSPLIB Function From C

In addition to correctly installing the DSPLIB software, you must follow these
steps to include a DSPLIB function in your code:

� Include the function header file corresponding to the DSPLIB function

� Link your code with dsp62x.lib

� Use a correct linker command file for the platform you use. Remember
most functions in dsp62x.lib are written assuming little-endian mode of op-
eration.

For example, if you want to call the Autocorrelation DSPLIB function, you
would add:

#include <autocor.h>

in your C file and compile and link using

cl6x main.c–z–o autocor_drv.out –lrts6201.lib ldsp62x.lib

Code Composer Studio Users

Assuming your C_DIR environment is correctly set up (as mentioned in Sec-
tion 2.1, How to Install DSPLIB), you would have to add DSPLIB under Code
Composer Studio environment by choosing dsp62x.lib from the menu Project
–> Add Files to Project. Also, you should make sure that you link with the cor-
rect run-time support library and DSPLIB by having the following lines in your
linker command file:

–lrts6201.lib

–ldsp62x.lib

2.2.3 Calling a DSP Function From Assembly

The ’C62x DSPLIB functions were written to be used from C. Calling the func-
tions from assembly language source code is possible as long as the calling
function conforms to the Texas Instruments ’C62x C compiler calling conven-
tions. For more information, refer to Section 8 (Runtime Environment) of
TMS320C6000 Optimizing C Compiler User’s Guide (Literature Number
SPRU187).

How to Rebuild DSPLIB

 2-6

2.2.4 How DSPLIB is Tested – Allowable Error

DSPLIB is tested under the Code Composer Studio environment against a ref-
erence C implementation. You can expect identical results between Reference
C implementation and its Assembly implementation when using test routines
that deal with fixed-point type results. The test routines that deal with floating
points typically allow an error margin of 0.000001 when comparing the results
of reference C code and DSPLIB assembly code.

2.2.5 How DSPLIB Deals With Overflow and Scaling Issues

The DSPLIB functions implement the same functionality of the reference C
code. The user is expected to conform to the range requirements specified in
the API function, and in addition, take care to restrict the input range in such
a way that the outputs do not overflow.

2.3 How to Rebuild DSPLIB

If you would like to rebuild DSPLIB (for example, because you modified the
source file contained in the archive), you will have to use the mk6x utility as
follows:

 mk6x dsp62x.src –l dsp62x.lib

Using IMGLIB / How to Rebuild IMGLIB

3-1

DSPLIB Function Tables

This chapter provides tables containing all DSPLIB functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic Page

3.1 Arguments and Conventions Used 3-2.

3.2 DSPLIB Functions 3-3.

3.3 DSPLIB Function Tables 3-3.

Table 3–1 Argument Conventions 3-2.

Table 3–2 Adaptive Filtering 3-3.

Table 3–3 Correlation 3-3.

Table 3–4 FFT 3-3.

Table 3–5 Filtering and Convolution 3-4.

Table 3–6 Math 3-4.

Table 3–7 Matrix 3-5.

Table 3–8 Miscellaneous 3-5.

Chapter 3

Arguments and Conventions Used

 3-2

3.1 Arguments and Conventions Used

The following convention has been followed when describing the arguments
for each individual function:

Table 3–1. Argument Conventions

Argument Description

x,y Argument reflecting input data vector

r Argument reflecting output data vector

nx,ny,nr Arguments reflecting the size of vectors x,y, and r, respectively. For
functions in the case nx = ny = nr, only nx has been used across.

h Argument reflecting filter coefficient vector (filter routines only)

nh Argument reflecting the size of vector h

w Argument reflecting FFT coefficient vector (FFT routines only)

DSPLIB Functions

3-3DSPLIB Function Tables

3.2 DSPLIB Functions

The routines included in the DSP library are organized into eight functional
categories and listed below in alphabetical order.

� Adaptive filtering

� Correlation

� FFT

� Filtering and convolution

� Math

� Matrix functions

� Miscellaneous

3.3 DSPLIB Function Tables

Table 3–2. Adaptive Filtering

Functions Description Page

long firlms2(short h[], short x[], short b, int nh) LMS FIR (radix 2) 4-2

Table 3–3. Correlation

Functions Description Page

void autocor(short r[],short x[], int nx, int nr) Autocorrelation 4-4

Table 3–4. FFT

Functions Description Page

void bitrev_cplx (int *x, short *index, int nx) Complex Bit-Reverse 4-6

void radix2 (int nx, short x[], short w[]) Complex Forward FFT (radix 2) 4-9

void r4fft (int nx, short x[], short w[]) Complex Forward FFT (radix 4) 4-11

DSPLIB Function Tables

 3-4

Table 3–5. Filtering and Convolution

Functions Description Page

void fir_cplx (short *x, short *h, short *r, int nh, int nx) Complex FIR Filter (radix 2) 4-14

void fir_gen (short *x, short *h, short *r, int nh, int nr) FIR Filter (general purpose) 4-15

void fir_r4 (short *x, short *h, short *r, int nh, int nr) FIR Filter (radix 4) 4-17

void fir_r8 (short *x, short *h, short *r, int nh, int nr) FIR Filter (radix 8) 4-18

void fir_sym (short *x, short *h, short *r, int nh, int nr, int s) Symmetric FIR Filter (radix 8) 4-20

void iir(short *r1, short *x, short *r2, short *h2, short *h1,
int nr)

IIR with 5 Coefficients per Biquad 4-21

void iir_cas4(int n, short *c, int *d, int *r) IIR with 4 Coefficients per Biquad 4-23

int lat_fwd (int r, int nx, short x[], short h[]) Forward Lattice (radix 2) 4-24

int lat_inv (short h[], int nx, short x[], int r) Inverse Lattice (radix 2) 4-25

Table 3–6. Math

Functions Description Page

int dotp_sqr(int G, short *x, short *y, int *r, int nx) Vector Dot Product and Square 4-27

int dotprod(short *x, short *y, int nx) Vector Dot Product 4-28

short maxval (short *x, int nx) Maximum Value of a Vector 4-29

int maxidx (short *x, int nx) Index of the Maximum Element of
a Vector

4-30

short minval (short *x, int nx) Minimum Value of a Vector 4-31

void mul32(int *x, int *y, int *r, short nx) 32-bit Vector Multiply 4-32

void neg32(int *x, int *r, short nx) 32-bit Vector Negate 4-34

void recip16 (short *x, short *rfrac, short *rexp, short nx) 16-bit Reciprocal 4-35

int vecsumsq (short *x, int nx) Sum of Squares 4-37

void w_vec(short *x, short *y, short m, short *r, short nr) Weighted Vector Sum 4-38

DSPLIB Function Tables

3-5DSPLIB Function Tables

Table 3–7. Matrix

Functions Description Page

void mmul(short *x, short r1, short c1, short *y, short r2,
short c2, short *r)

Matrix Multiplication 4-40

void mat_trans(short *x, short rows, short columns,
short *r)

Matrix Transpose 4-41

Table 3–8. Miscellaneous

Functions Description Page

short bexp(int *x, short nx) Max Exponent of a Vector (for
scaling)

4-43

void blk_move(short *x, short *r, int nx) Move a Block of Memory 4-44

void fltoq15 (float *x,short *r, short nx) Float to Q15 Conversion 4-45

int minerror (short *GSP0_TABLE,short *errCoefs, int
savePtr_ret)

Minimum Energy Error Search 4-46

void q15tofl (short *x, float *r, short nx) Q15 to Float Conversion 4-48

int v_srch (int numBasis, short *R, short *wiPtr, short
*TABLE, short *wBasisPtr, short *D)

Codebook Search for VSELP 4-49

4-1

DSPLIB Reference

This chapter provides a list of the functions within the DSP library (DSPLIB)
organized into functional catagories. The functions within each catagory are
listed in alphabetical order and include arguments, descriptions, algorithms,
benchmarks, and special requirements.

Topic Page

4.1 Adaptive Filtering 4-2.

4.2 Correlation 4-4.

4.3 FFT 4-6.

4.4 Filtering and Convolution 4-14.

4.5 Math 4-27.

4.6 Matrix Functions 4-40.

4.7 Miscellaneous 4-43.

Chapter 4

Adaptive Filtering

 4-2

4.1 Adaptive Filtering

4.1.1 LMS FIR (radix 2)firlms2

long firlms2(short h[], short x[], short b, int nh)

Arguments

h[nh] Coefficient Array

x[nh] Input Array

b Error from previous FIR

nh Number of coefficients

return long return value

Description Least Mean Square Adaptive Filter. Computes an update of all nh co-
efficients by adding the weighted error times the inputs to the original
coefficients. This assumes single sample input followed by the last
nh–1 inputs and nh coefficients.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
long firlms2(short h[],short x[], short b,
int nh)
{

int i;
long r = 0;
for (i = 0; i < nh; i++) {

h[i] += (x[i] * b) >> 16;
r += x[i + 1] * h[i];

}
return r;

}

Special Requirements

� This routine assumes 16-bit input and output.

� The number of coefficients must be a multiple of 2.

Implementation Notes

� The loop is unrolled once.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Adaptive Filtering

4-3DSPLIB Reference

Benchmarks

Cycles 1.5 * nh + 16

Codesize 288 bytes

Correlation

 4-4

4.2 Correlation

4.2.1 Autocorrelationautocor

void autocor(short r[],short x[], int nx, int nr)

Arguments

r[nr] Resulting array of autocorrelation

x[nx] Input array

nx Length of input array vector multiple of 8

nr Length of autocorrelation multiple of 2

Description This routine performs the autocorrelation of the input array x. It is as-
sumed that the length of the input array, x, is a multiple of 8 and the
length of the output array, r, is a multiple of 2. The assembly routine
performs 2 output samples at a time. This is typically used in VSELP
code.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
void autocor(short r[],short x[], int nx, int nr)
{

int i,k,sum;
for (i = 0; i < nr; i++){

sum = 0;
for (k = nr; k < nx+nr; k++)

sum += x[k] * x[k–i];
r[i] = (sum >> 15);

}
}

Special Requirements

� nx must be a multiple of 8

� nr must be a multiple of 2

� x[0] must on a word boundary

Implementation Notes

� The inner loop is unrolled eight times, thus the length of the input
array must be a multiple of eight.

� The outer loop is unrolled twice, thus the length of output array
must be a multiple of 2.

Correlation

4-5DSPLIB Reference

� The outer loop is conditionally executed in parallel with the inner
loop. This allows for a zero overhead outer loop.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles (nx/2)*nr + 16 + nr/4 (16 + nr/4 is from memory
bank hits)

Codesize 544 bytes

FFT

 4-6

4.3 FFT

4.3.1 Complex Bit-Reversebitrev_cplx

void bitrev_cplx (int *x, short *index, int nx)

Arguments

x[nx] Pointer to complex input vector x of size nx

nx Number of elements in vector x. nx must be a pow-
er of 2.

index[] Array of size ≈ sqrt(nx) created by the routine digi-
trev_index to allow the fast implementation of the bit
reversal

Description This function bit-reverses the position of elements in complex vec-
tor x. This function is used in conjunction with FFT routines to provide
the correct format for the FFT input or output data. The bit-reversal of
a bit-reversed order array yields a linear-order array.

Algorithm TI retains all rights, title and interest in this code and only authorizes
the use of this code on TI TMS320 DSPs manufactured by TI. This is
the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.
void bitrev_cplx (int *x, short *index, int nx)
{

int i;
short i0, i1, i2, i3;
short j0, j1, j2, j3;
int xi0, xi1, xi2, xi3;
int xj0, xj1, xj2, xj3;
short t;
int a, b, ia, ib, ibs;
int mask;
int nbits, nbot, ntop, ndiff, n2, halfn;
short *xs= (short *) x;

nbits = 0;
i = nx;
while (i > 1){

i = i >> 1;
nbits++;}

nbot = nbits >> 1;
ndiff = nbits & 1;

FFT

4-7DSPLIB Reference

ntop = nbot + ndiff;
n2 = 1 << ntop;
mask = n2 – 1;
halfn = nx >> 1;

for(i0 = 0; i0 < halfn; i0 += 2) {
b = i0 & mask;
a = i0 >> nbot;
if (!b) ia = index[a];
ib = index[b];
ibs= ib << nbot;

j0 = ibs + ia;
t = i0 < j0;
xi0= x[i0];
xj0= x[j0];

if (t){x[i0] = xj0;
x[j0] = xi0;}

i1 = i0 + 1;
j1 = j0 + halfn;
xi1= x[i1];
xj1= x[j1];
x[i1] = xj1;
x[j1] = xi1;

i3 = i1 + halfn;
j3 = j1 + 1;
xi3= x[i3];
xj3= x[j3];
if (t){x[i3] = xj3;

x[j3] = xi3;}
}

}

**

 Use The Routine below To Generate the Index Table for

 Bit/Digit Reversing of Radix–2 and Radix–4 Routines

**

This routine calculates the index for digitrev of length n (length of index is
2^(radix*ceil(k/radix)) where n = 2^k

 in other words

 Either:sqrt(n) when n=2^even# Or: sqrt(2)*sqrt(n) when n=2^odd# [radix 2]

FFT

 4-8

 sqrt(n) when n=4^even# Or: sqrt(4)*sqrt(n) when n=4^odd# [radix 4]

 Note: the variable “radix” is 2 for radix–2 and 4 for radix–4

**
void digitrev_index(short *index, int n, int radix){

int i,j,k;
short nbits, nbot, ntop, ndiff, n2, raddiv2;
nbits = 0;
i = n;
while (i > 1){

i = i >> 1;
nbits++;

}

raddiv2 = radix >> 1;
nbot = nbits >> raddiv2;
nbot = nbot << raddiv2 – 1;
ndiff = nbits & raddiv2;
ntop = nbot + ndiff;
n2 = 1 << ntop;

index[0] = 0;
for (i = 1, j = n2/radix + 1; i < n2 – 1; i++){

index[i] = j – 1;
for(k = n2/radix; k*(radix–1) < j;k /= radix)

j –= k*(radix–1);
j += k;

}
index[n2 – 1] = n2 – 1;

}

Special Requirements

� nx must be a power of 2

� The array setup by digitrev_index must be set up before the func-
tion bitrev_cplx is called.

� If nx <= 4K, one can use the char (8-bit) data type for the “index”
variable. This would require changing the LDH when loading in-
dex values in the assembly routine to LDB. This would further re-
duce the size of the Index Table by half its size.

Implementation Notes

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

FFT

4-9DSPLIB Reference

Benchmarks

Cycles (nx / 4 + 2) * 7 + 14

Codesize 480 bytes

4.3.2 Complex Forward FFT (radix 2)radix2

void radix2 (int nx, short x[], short w[])

Arguments

nx Number of complex elements in vector x. Must be a
power of 2 such that 4 ≤ nx ≤ 65536.

x[2*nx] Pointer to input and output sequences. Size 2*nx
elements.

w[nx] Pointer to vector of FFT coefficients of size nx ele-
ments.

Description This routine is used to compute FFT of a complex sequence of size
nx, a power of 2, with “decimation-in-frequency decomposition” meth-
od. The output is in bit-reversed order. Each complex value is with in-
terleaved 16-bit real and imaginary parts.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void radix2 (short x[],short nx,short w[])
{

short n1,n2,ie,ia,i,j,k,l;
short xt,yt,c,s;

n2 = nx;
ie = 1;
for (k=nx; k > 1; k = (k >> 1)) {

n1 = n2;
n2 = n2>>1;
ia = 0;
for (j=0; j < n2; j++) {

c = w[2*ia];
s = w[2*ia+1];
ia = ia + ie;
for (i=j; i < nx; i += n1) {

l = i + n2;

FFT

 4-10

xt = x[2*l] – x[2*i];
x[2*i] = x[2*i] + x[2*l];
yt = x[2*l+1] – x[2*i+1];
x[2*i+1] = x[2*i+1] + x[2*l+1];
x[2*l] = (c*xt + s*yt)>>15;
x[2*l+1] = (c*yt – s*xt)>>15;

}
}
ie = ie<<1;

}
}

Special Requirements

� 2 <= nx <= 32768 (nx is a power of 2)

� Input x and coefficients w should be in different data sections or
memory spaces to eliminate memory bank hits. If this is not pos-
sible, they should be aligned on different word boundaries to mini-
mize memory bank hits.

� x data is stored in the order real[0], image[0], real[1], ...

� w coefficients are stored in the order k*(–cos[0*delta]),
k*(–sin[0*delta]), k*(–cos[1*delta]), ... where delta = 2*π/nx,
k = 32767

Implementation Notes

� Loads input x and coefficient w as words.

� Both loops j and i0 shown in the C code are placed in the INNER-
LOOP of the assembly code.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles log2(nx) * (15 + 4 * (nx/2 – 2)) + 18 + [mbh]

[mbh] (memory bank hits) = 0 if x and w are in
different memory spaces; otherwise:

[mbh] = [N/8–1] on C67xx, except 1 mem bank
hit if N=8

[mbh] = [N/4] on C62xx

Codesize 960 bytes

FFT

4-11DSPLIB Reference

4.3.3 Complex Forward FFT (radix 4)r4fft

void r4fft (int nx, short x[], short w[])

Arguments

nx Number of complex elements in vector x. Must be a
power of 4 such that 4 ≤ nx ≤ 65536.

x[2*nx] Pointer to input and output sequences. Size 2*nx
elements.

w[nx] Pointer to vector of FFT coefficients of size nx ele-
ments.

Description This routine is used to compute FFT of a complex sequence size nx,
a power of 4, with “decimation-in-frequency decomposition” method.
The output is in digit-reversed order. Each complex value is with inter-
leaved 16-bit real and imaginary parts.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
void r4fft (int nx, short x[], short w[])
{

int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3,
j, k;

short t, r1, r2, s1, s2, co1, co2, co3, si1,
si2, si3;

n2 = nx;
ie = 1;
for (k = nx; k > 1; k >>= 2) {

n1 = n2;
n2 >>= 2;
ia1 = 0;
for (j = 0; j < n2; j++) {

ia2 = ia1 + ia1;
ia3 = ia2 + ia1;
co1 = w[ia1 * 2 + 1];
si1 = w[ia1 * 2];
co2 = w[ia2 * 2 + 1];
si2 = w[ia2 * 2];
co3 = w[ia3 * 2 + 1];
si3 = w[ia3 * 2];
ia1 = ia1 + ie;
for (i0 = j; i0 < nx; i0 += n1) {

FFT

 4-12

i1 = i0 + n2;
i2 = i1 + n2;
i3 = i2 + n2;
r1 = x[2 * i0] + x[2 * i2];
r2 = x[2 * i0] – x[2 * i2];
t = x[2 * i1] + x[2 * i3];
x[2 * i0] = r1 + t;
r1 = r1 – t;
s1 = x[2 * i0 + 1] + x[2 * i2 + 1];
s2 = x[2 * i0 + 1] – x[2 * i2 + 1];
t = x[2 * i1 + 1] + x[2 * i3 + 1];
x[2 * i0 + 1] = s1 + t;
s1 = s1 – t;
x[2 * i2] = (r1 * co2 + s1 * si2) >>
15;
x[2 * i2 + 1] = (s1 * co2–r1 *
si2)>>15;
t = x[2 * i1 + 1] – x[2 * i3 + 1];
r1 = r2 + t;
r2 = r2 – t;
t = x[2 * i1] – x[2 * i3];
s1 = s2 – t;
s2 = s2 + t;
x[2 * i1] = (r1 * co1 + s1 * si1)
>>15;
x[2 * i1 + 1] = (s1 * co1–r1 *
si1)>>15;
x[2 * i3] = (r2 * co3 + s2 * si3)
>>15;
x[2 * i3 + 1] = (s2 * co3–r2 *
si3)>>15;

}
}
ie <<= 2;

}
}

Special Requirements

� 4 <= nx <= 65536 (nx a power of 4)

� x is aligned on a 4*nx Byte (nx*word) boundary for circular
buffering

FFT

4-13DSPLIB Reference

� Input x and coefficients w should be in different data sections or
memory spaces to eliminate memory bank hits. If this is not pos-
sible, they should be aligned on an odd word boundaries to mini-
mize memory bank hits

� x data is stored in the order real[0], image[0], real[1], ...

� w coefficients are stored in the order k*sin[0*delta], k*cos[0*del-
ta], k*sin[1*delta], ... where delta = 2*π/N, k = 32767

Implementation Notes

� Loads input x and coefficient w as words.

� Both loops j and i0 shown in the C code are placed in the INNER-
LOOP of the assembly code.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles log4(nx) * (21 + 10 * (nx/4 + 1)) + 22 + [mbh]

[mbh] (memory bank hits) = 0 if x and w are in
different

memory spaces. otherwise:

[mbh] = [N/8+1] on 67xx, except 1 mem bank
hit if N=8

[mbh] = [N/4] on 62xx

Codesize 800 bytes

Filtering and Convolution

 4-14

4.4 Filtering and Convolution

4.4.1 Complex FIR Filter (radix 2)fir_cplx

void fir_cplx (short *x, short *h, short *r, int nh, int nx)

Arguments

x[2*nx] Pointer to input array of size 2*nx

h[2*nh] Pointer to coefficient array of size 2*nh

r[2*nx] Pointer to output array of size 2*nx

nh Number of coefficients in vector h. Must be a multi-
ple of 2.

nx Number of samples to calculate

Description This function implements the FIR filter for complex input data. This
function has no memory bank hits regardless of where x, h, and r ar-
rays are located in memory. The filter is nx output samples and nh
coefficients. Each array consists of an even and odd term with even
terms representing the real part and the odd terms the imaginary part
of the element.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void fir_cplx(short *x, short *h, short *r,
short nh, short nx)

{

short i,j;

int imag, real;

for (i = 0; i < 2*nx; i += 2){

imag = 0;

real = 0;

for (j = 0; j < 2*nh; j += 2){

real+=h[j] *x[i–j]–h[j+1] *x[i+1–j];

imag += h[j] * x[i+1–j] + h[j+1] * x[i–j];

}

r[i] = (real >> 15);

r[i+1] = (imag >> 15);

}

}

Filtering and Convolution

4-15DSPLIB Reference

Special Requirements

� nh, the number of coefficients, must be even and greater than or
equal to 2.

� nx, the number of outputs computed, must be greater than or
equal to 1.

� nh * nx must be greater than or equal to 4.

Implementation Notes

� The inner loop is unrolled twice, thus nh must be a multiple of two.

� The outer loop is conditionally executed in parallel with the inner
loop. This allows for a zero overhead outer loop.

� Both the inner and outer loops are software pipelined.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 2 * nx * nh + 10

Codesize 416 bytes

4.4.2 FIR Filter (general purpose)fir_gen

void fir_gen (short *x, short *h, short *r, int nh, int nr)

Arguments

x[nr+nh–1] Pointer to input array of size nr + nh – 1

h[nh] Pointer to coefficient array of size nh

r[nr] Pointer to output array of size nr

nh Number of coefficients nh ≥ 5

nr Number of samples to calculate nr ≥ 1

Description Computes a real FIR filter (direct-form) using coefficients stored in
vector h. The real data input is stored in vector x. The filter output result

Filtering and Convolution

 4-16

is stored in vector r. This FIR assumes the number of filter coefficients
is greater than or equal to 5. It operates on 16-bit data with a 32-bit
accumulate. This routine has no memory hits regardless of where x,
h, and r arrays are located in memory. The filter is nr output samples
and nh coefficients. The assembly routine performs 2 output samples
at a time.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void fir_gen(short x[], short h[], short r[],
int nh, int nr)
{

int i, j, sum;

for (j = 0; j < nr; j++) {
sum = 0;
for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];
r[j] = sum >> 15;

}
}

Special Requirements

� nh, the number of coefficients, must be greater than or equal to 5.

� nr, the number of outputs computed, must be greater than or
equal to 1.

Implementation Notes

� The inner loop is unrolled four times, but the last three accumu-
lates are executed conditionally to allow for a number of coeffi-
cients that is not a multiple of four.

� The outer loop is unrolled twice, but the last store is executed con-
ditionally to allow for the case when the number of output samples
is not a multiple of two.

� Both the inner and outer loops are software pipelined.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Filtering and Convolution

4-17DSPLIB Reference

Benchmarks

Cycles (9 + nh) * nr/2 + 15

Codesize 672 bytes

4.4.3 FIR Filter (radix 4)fir_r4

void fir_r4 (short *x, short *h, short *r, int nh, int nr)

Arguments

x[nr+nh–1] Pointer to input array of size nr + nh – 1

h[nh] Pointer to coefficient array of size nh

r[nr] Pointer to output array of size nr

nh Number of coefficients nh ≥ 8, multiple of 4

nr Number of samples to calculate nr ≥ 2, even

Description Computes a real FIR filter (direct-form) using coefficients stored in
vector h. The real data input is stored in vector x. The filter output result
is stored in vector r. This FIR operates on 16-bit data with a 32-bit ac-
cumulate. This routine has no memory hits regardless of where x, h,
and r arrays are located in memory. The filter is nr output samples and
nh coefficients. The assembly routine performs 2 output samples at
a time.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void fir_r4(short x[], short h[], short r[],

int nh, int nr)

{

int i, j, sum;

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}

Filtering and Convolution

 4-18

Special Requirements

� nh, the number of coefficients, must be a multiple of 4 and greater
than or equal to 8.

� nr, the number of outputs computed, must be even and greater
than or equal to 2.

Implementation Notes

� The inner loop is unrolled four times, thus the number of filter coef-
ficients must be a multiple of four.

� The outer loop is unrolled twice, thus the number of output sam-
ples must be a multiple of two.

� Both the inner and outer loops are software pipelined.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles (9 + nh) * nr/2 + 6

Codesize 576 bytes

4.4.4 FIR Filter (radix 8)fir_r8

void fir_r8 (short *x, short *h, short *r, int nh, int nr)

Arguments

x[nr+nh–1] Pointer to input array of size nr + nh – 1

h[nh] Pointer to coefficient array of size nh

r[nr] Pointer to output array of size nr

nh Number of coefficients nh >= 8, multiple of 8

nr Number of samples to calculate nr >= 2, even

Description Computes a real FIR filter (direct-form) using coefficients stored in
vector h. The real data input is stored in vector x. The filter output result
is stored in vector r. This FIR operates on 16-bit data with a 32-bit ac-

Filtering and Convolution

4-19DSPLIB Reference

cumulate. This routine has no memory hits regardless of where x, h,
and r arrays are located in memory. The filter is nr output samples and
nh coefficients. The assembly routine performs 2 output samples at
a time.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void fir_r8 (short x[], short h[], short r[],
int nh, int nr)
{

int i, j, sum;

for (j = 0; j < nr; j++) {
sum = 0;
for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];
r[j] = sum >> 15;
}

}

Special Requirements

� nh, the number of coefficients, must be a multiple of 8 and greater
than or equal to 8.

� nr, the number of outputs computed, must be even and greater
than or equal to 2.

Implementation Notes

� The inner loop is unrolled eight times, thus the number of filter co-
efficients must be a multiple of eight.

� The outer loop is unrolled twice, thus the number of output sam-
ples must be a multiple of two.

� Both the inner and outer loops are software pipelined.

� The outer loop is conditionally executed in parallel with the inner
loop. This allows for a zero overhead outer loop.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Filtering and Convolution

 4-20

Benchmarks

Cycles nh * nr/2 + 13

Codesize 512 bytes

4.4.5 Symmetric FIR Filter (radix 8)fir_sym

void fir_sym (short *x, short *h, short *r, int nh, int nr, int s)

Arguments

x[nr+2nh] Pointer to input array of size nr + 2nh

h[2*nh+1] Pointer to coefficient array of size 2nh+1

r[nr] Pointer to output array of size nr

nh Number of coefficients nh ≥ 8, multiple of 8

nr Number of samples to calculate nr ≥ 2, even

s Number of insignificant digits to truncate

Description This symmetric FIR filter assumes the number of filter coefficients is
2nh + 1 and the number of output samples is a multiple of 2. It operates
on 16-bit data with a 40-bit accumulation. This routine has no memory
hits. However, h should be word-aligned. The filter is nr output sam-
ples and 2nh+1 coefficients. The assembly routine performs 2 output
samples at a time.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void fir_sym(short x[], short h[], short r[],

int nh, int nr, int s)

{

int i, j;

long y0;

long round = (long) 1 << (s – 1);

for (j = 0; j < nr; j++) {

y0 = round;

for (i = 0; i < nh; i++)

y0+=(short) (x[j+ i]+x[j +2*nh–i]) * h[i];

y0 += x[j + nh] * h[nh];

Filtering and Convolution

4-21DSPLIB Reference

r[j] = (int) (y0 >> s);
}

}

Special Requirements

� nh must be even and greater than or equal to 2.

� nr, the number of outputs computed, must be even and greater
than or equal to 2.

� h, the coefficient array, must be word aligned.

Implementation Notes

� The inner loop is unrolled twice, thus nh must be a multiple of two.

� The outer loop is unrolled twice, thus the number of output sam-
ples must be a multiple of two.

� Both the inner and outer loops are software pipelined.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles (3nh/2+ 10)* nr/2 + 17

Codesize 480 bytes

4.4.6 IIR with 5 Coefficients per Biquadiir

void iir (short *r1, short *x, short *r2, short *h2, short *h1, int nr)

Arguments

r1[nr] Output array (used)

x[nr+4] Input array

r2[nr] Output array (stored)

h1[4] Filter coefficients

h2[5] Filter coefficients

nr Number of output samples

Filtering and Convolution

 4-22

Description The IIR performs an Auto-regressive moving-average (ARMA) filter
with 4 auto-regressive filter coefficients and 5 moving-average filter
coefficients for nr output samples. The output vector is stored in two
locations. This routine is used as a high pass filter in the VSELP vo-
coder. All data is assumed to be 16-bit.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void iir(short *r1, short *x, short *r2, short *h2,

short *h1, int nr)

{

int j,i;

int sum;

for (i=0; i<nr; i++){

sum = h2[0] * x[4+i];

for (j = 1; j <= 4; j++)

sum += h2[j]*x[4+i–j]–h1[j]*r1[4+i–j];

r1[4+i] = (sum >> 15);

r2[i] = r1[4+i];

}

}

Special Requirements To avoid memory hits r1 must be aligned on the next halfword bound-
ary following the alignment of x. Otherwise, there is a total of nr
memory hits (once per outer loop.)

Implementation Notes

� The inner loop is completely unrolled and software pipelined (i.e.,
each time the 5-cycle loop is executed, the inner loop of the C
code is executed.)

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 5*nr + 16

Codesize 416 bytes

Filtering and Convolution

4-23DSPLIB Reference

4.4.7 IIR with 4 Coefficients per Biquadiir_cas4

void iir_cas4(int n, short *c, int *d, int *r)

Arguments

n Number of cascaded biquads

c[4n] array containing –a1, –a2, b1, b2 biquad coefs

d[2n] array of the delayed states within biquads

r[2] inputs r[0] and r[1] (also outputs)

Description This function performs a cascaded biquad IIR filter with the direct form
II structure (4 multiplies.) It performs two samples at a time. Coeffi-
cients are stored in the order –a1, –a2, b1, b2 for each successive bi-
quad located in the c array. Both outputs are stored back to the loca-
tion of the inputs r[0] and r[1]. The inputs and outputs are 32-bit values
while the coefficients are 16-bit values.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void iir_cas4(int n, short *c, int *d, int *r)

{

int k0, k1, i;

for (i = 0; i < n; i++) {

k0 = c[4*i+1]*(d[2*i+1] >> 16) +

c[4*i+0]*(d[2*i+0]>> 16) +r[0];

r[0] = c[4*i+3]*(d[2*i+1] >> 16) +

c[4*i+2]*(d[2*i+0]>> 16) + k0;

d[2*i+1] = k0;

k1 = c[4*i+1]*(d[2*i+0] >> 16) +

c[4*i+0]*(k0 >> 16) + r[1];

r[1] = c[4*i+3]*(d[2*i+0] >> 16) +

c[4*i+2]*(k0 >> 16) + k1;

d[2*i+0] = k1;

}

}

Special Requirements The d and c array pointers must be placed on opposite word bound-
aries to avoid memory hits.

Filtering and Convolution

 4-24

Implementation Notes

� The loop is written so that one biquad for each of the two inputs
is completed every time through the loop. There is an extra prim-
ing delay for the second input so that the biquads new delayed
state k0 is calculated based on the first input (i.e., the second input
is being processed by the biquad preceding the biquad which is
processing the first input.)

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 4*n + 16

Codesize 256 bytes

4.4.8 Forward Lattice (radix 2)lat_fwd

int lat_fwd (int r, int nx, short x[], short h[])

Arguments

r Result of forward synthesis

nx Number of data samples nx >=2, even

x[nx] Array of filter grains

h[nx] Array of coefficients

return int Return value

Description This routine implements a forward synthesis lattice filter and stores
the result in r. The filter consists of nx data samples. The value of r is
calculated by doing a multiply accumulate on the coefficients and filter
gains. New coefficients are also calculated. The x and h arrays contain
16-bit data.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

Filtering and Convolution

4-25DSPLIB Reference

int lat_fwd(int r, int nx, short x[], short h[])
{

int i;
r –= h[nx – 1] * x[nx – 1];
for (i = nx – 2; i >= 0; i––) {

r –= h[i] * x[i];
h[i + 1] = h[i] + ((x[i] * (r >> 16)) >> 16);

}
h[0] = r >> 16;
return r;

}

Special Requirements

� nx, the number of data samples, must be even and greater than
or equal to 2.

� Vectors h and x should be aligned on different half word bound-
aries to avoid memory hits.

Implementation Notes

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 2*nx + 18

Codesize 160 bytes

4.4.9 Inverse Lattice (radix 2)lat_inv

int lat_inv (short h[], int nx, short x[], int r)

Arguments

h[nx] Array of coefficients

nx Number of coefficients nx >=2, even

x[nx] Array of filter grains

r Result of inverse analysis

return int Result of inverse analysis

Filtering and Convolution

 4-26

Description This routine implements an inverse analysis lattice filter and stores the
result in r. The filter consists of nx stages. The value of r is calculated
by doing a multiply accumulate on the coefficients and filter gains.
New coefficients are also calculated.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

int lat_inv(short h[], int nx, short x[], int r)
{

int i;
short c, a;
c = r >> 16;
for (i = 0; i < nx; i++) {

a = h[i] + ((x[i] * (r >> 16)) >> 16);
r += h[i] * x[i];
h[i] = c;
c = a;

}
return r;

}

Special Requirements

� nx, the number of data samples, must be even and ≥ 2.

� Vectors h and x should be aligned on different half word bound-
aries to avoid memory hits.

Implementation Notes

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 1.5*nx + 10

Codesize 256 bytes

Math

4-27DSPLIB Reference

4.5 Math

4.5.1 Vector Dot Product & Squaredotp_sqr

int dotp_sqr(int G, short *x, short *y, int *r, int nx)

Arguments

G Calculated value of G (used in the VSELP coder)

x[nx] First vector array

y[nx] Second vector array

r Result of vector dot product of x and y

nx Number of elements in vector x

return int New value of G

Description This routine performs a nx element dot product and stores it in r. It also
squares each element of y and accumulates it in G. G is passed back
to calling function in register A4. This computation of G is used in the
VSELP coder.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
int dotp_sqr (int G,short *x,short *y,int *r,
int nx)
{

short *y2;
short *endPtr2;
y2 = x;
for (endPtr2 = y2 + nx; y2 < endPtr2; y2++){

*r += *y * *y2;
G += *y * *y;
y++;

}
return(G);

}

Special Requirements n should be an even number.

Implementation Notes

� Vectors x and y should be aligned on opposite word boundaries
to avoid memory hits.

� Load words are used to load two 16-bit values at a time

Math

 4-28

� The loop is unrolled once

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles nx + 8

Codesize 192

4.5.2 Vector Dot Productdotprod

int dotprod(short *x, short *y, int nx)

Arguments

x[nx] First vector array

y[nx] Second vector array

nx Number of elements of vector

return int Dot product of x and y

Description This routine takes two vectors and calculates their dot product. The
inputs are 16-bit short data and the output is a 32-bit number.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
int dotprod(short x[],short y[], int nx)
{

int sum;
int i;
sum = 0;
for(i=0; i<nx; i++){

sum += (x[i] * y[i]);
}
return (sum);

}

Special Requirements

� nx is an even number greater than 2

� Vectors x and y should be aligned on word boundaries

Math

4-29DSPLIB Reference

Implementation Notes

� Load words are used to load two 16-bit values at a time

� The loop is unrolled once

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles nx / 2 + 8

Codesize 192 bytes

4.5.3 Maximum Value of a Vectormaxval

short maxval (short *x, int nx)

Arguments

x[nx] Pointer to input vector of size nx

nx Length of input data vector

return short Maximum value of a vector

Description This routine finds the element with maximum value in the input vector
and returns that value.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
short maxval(short x[], int nx)
{

int i, max;
max = –32768;

for (i = 0; i < nx; i++)
if (x[i] > max)

max = x[i];
return max;

}

Special Requirements

� nx is a multiple of 6

� Vector x[] should be aligned on word boundary

Math

 4-30

Implementation Notes

� The loop is unrolled 6 times.

� After finding a new max value, this function uses the multiply (M)
units to move value between registers.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles nx / 2 +13

Codesize 320 bytes

4.5.4 Index of the Maximum Element of a Vectormaxidx

int maxidx (short *x, int nx)

Arguments

x[nx] Pointer to input vector of size nx

nx Length of input data vector (nx >= 3)

return int Index for vector element with maximum value

Description This routine finds the max value of a vector and returns the index of
the value. After finding a new max value, it uses multiply (M) units to
move value between registers.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
int maxidx(short x[], int nx)
{

int max, index, i;
max = –32768;
for (i = 0; i < nx; i++)

if (x[i] > max) {
max = x[i];
index = i;

}
return index;

}

Math

4-31DSPLIB Reference

Special Requirements

� nx >= 3

� nx is a multiple of 3

� vector x[] should be aligned on half-word boundaries

Implementation Notes

� The loop is unrolled 3 times.

� After finding a new max value, this function uses the multiply (M)
units to move value between registers.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 2 * (nx / 3) +12

Codesize 288 bytes

4.5.5 Minimum Value of a Vectorminval

short minval (short *x, int nx)

Arguments

x [nx] Pointer to input vector of size nx

nx Length of input data vector

return short Maximum value of a vector

Description This routine finds the minimum value of a vector and returns the value.
After finding a new minimum value, it uses multiply units to move value
between registers.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

Math

 4-32

short minval(short x[], int nx)
{

int i, min;
min = 32767;

for (i = 0; i < nx; i++)
if (x[i] < min)

min = x[i];
return min;

}

Special Requirements

� nx is a multiple of 6

� Vector x should be aligned on a word boundary

� Little-Endian configuration

Implementation Notes

� The loop is unrolled 6 times.

� After finding a new min value, it uses multiply units to move value
between registers.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles nx / 2 +13

Codesize 320 bytes

4.5.6 32-bit Vector Multiplymul32

void mul32(int *x, int *y, int *r, short nx)

Arguments

x[nx] Pointer to input data vector 1 of size nx. In-place
processing allowed (x can be = y = r)

y[nx] Pointer to input data vector 2 of size nx

r[nx] Pointer to output data vector of size nx

nx Number of elements in input and output vectors.

Math

4-33DSPLIB Reference

Description This function multiplies two 32-bit Q31 vector elements and produces
a vector of 32-bit Q31 numbers.

Algorithm In the comments below, X and Y are the two input values. Xhigh and
Xlow represent the upper and lower 16 bits of X. This is the C equiva-
lent of the assembly code without restrictions. Note that the assembly
code is hand optimized and restrictions may apply.
void mul32(const int *x, const int *y, int *r,
short nx)
{

short i;
int a,b,c,d,e;
for(i=nx;i>0;i––)
{

a=*(x++);
b=*(y++);
c=_mpyluhs(a,b); /* Xlow*Yhigh */
d=_mpyhslu(a,b); /* Xhigh*Ylow */
e=_mpyh(a,b); /* Xhigh*Yhigh */
d+=c; /* Xhigh*Ylow+Xlow*Yhigh */
d=d>>16; /* (Xhigh*Ylow+Xlow*Yhigh)>>16 */
e+=d; /* Xhigh*Yhigh +

/* (Xhigh*Ylow+Xlow*Yhigh)>>16 */
*(r++)=e;

}
}

Special Requirements

� Inputs and output vectors are assumed to be in Q31 format.

� Output is accurate to least significant bit.

Implementation Notes

� Results are accurate up to least significant bit.

� 16-bit multiplies followed by shifts and adds were used to emulate
a 32-bit multiply.

� The innermost loop was unrolled 4 times and pipelined. Condi-
tional stores are used so that nx does not have to be a multiple
of 4.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Math

 4-34

Benchmarks

Cycles 17 + 6 * [(nx–2) / 4]

Codesize 704 bytes

4.5.7 32-bit Vector Negateneg32

void neg32(int *x, int *r, short nx)

Arguments

x[nx] Pointer to input data vector 1 of size nx with 32-bit
elements. In-place processing allowed (x can = r)

r[nx] Pointer to output data vector of size nx with 32-bit
elements.

nx Number of elements of input and output vectors.

Description This function negates the elements of a vector (32-bit elements).

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void neg32(int *x, int *r, short nx)

{

short i;

for(i=nx; i>0; i––)

(r++)=–(x++);

}

Special Requirements

� Input and output are 32-bit signed integers.

� To prevent memory bank conflicts, if both x and r are in the same
data section (memory space), they should both start at 64-bit
boundaries.

Implementation Notes

� The loop is unrolled 7 times and pipelined. Conditional stores are
used so that nx does not have to be a multiple of 7.

� The stores are scheduled to eliminate memory bank hits when
vectors are properly aligned.

Math

4-35DSPLIB Reference

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 13 + 7 * [nx / 7]

Codesize 416 bytes

4.5.8 16-bit Reciprocalrecip16

void recip16 (short *x, short *rfrac, short *rexp, short nx)

Arguments

x[nx] Pointer to input data vector of size nx

rfrac[nx] Pointer to output data vector for fractional values

rexp[nx] Pointer to output data vector for exponent values

nx Number of elements of input and output vectors

Description This routine returns the fractional and exponential portion of the recip-
rocal of a Q15 number. Since the reciprocal is always greater than 1,
it returns an exponent such that:

(rfrac[i] * 2 rexp[i]) = true reciprocal

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void recip16(short *x, short *rfrac, short *rexp,
short nx)
{

int i,j,a,b;
short neg, normal;
for(i=nx; i>0; i––)
{

a=*(x++);
if(a<0) /* take absolute value */
{

a=–a;
neg=1;

}

Math

 4-36

else neg=0;
normal=_norm(a); /* normalize number */
a=a<<normal;
(rexp++)=normal–15; / store exponent */
b=0x80000000; /* dividend = 1 */
for(j=15;j>0;j––)

b=_subc(b,a); /* divide */
b=b&0x7FFF; /* clear remainder

/* (clear upper half) */
if(neg) b=–b; /* if originally

/* negative, negate */
(rfrac++)=b; / store fraction */

}
}

Special Requirements

� x and rfrac are Q15 format.

� Output is accurate up to the least significant bit of rfrac, but note
that this bit could carry over and change rexp.

� For a reciprocal to 0, the procedure will return a fractional part of
7FFFh and an exponent of 16.

Implementation Notes

� The conditional subtract instruction, SUBC, is used for division.
SUBC is used once for every bit of quotient needed (15).

� The kernel processes two divisions in parallel, but note that nx
does not have to be a multiple of 2.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 14 + 17 * [nx/2]

Codesize 672 bytes

Math

4-37DSPLIB Reference

4.5.9 Sum of Squaresvecsumsq

int vecsumsq (short *x, int nx)

Arguments

x[nx] Input vector

nx Number of elements in x

return int Sum of the squares

Description This routine takes one vector with (nx) number of elements. It calcu-
lates the square of each element and accumulates the results and re-
turns the sum.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

int vecsumsq(short x[], int nx)
{

int i, sum=0;

for(i=0; i<nx; i++)
{

sum += x[i]*x[i];
}
return(sum);

}

Special Requirements Number of elements nx >= 2 (even OR odd)

Implementation Notes

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles nx / 2 + 9

Codesize 224 bytes

Math

 4-38

4.5.10 Weighted Vector Sumw_vec

void w_vec(short *x, short *y, short m, short *r, short nr)

Arguments

x[nr] Vector being weighted

y[nr] Summation vector

m Weighting factor

r[nr] Output vector

nr Dimensions of the vectors

Description This routine is used to obtain the weighted vector sum. Both the inputs
and output are 16-bit numbers.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
void w_vec(short x[],short y[],short m,
short r[],short nr)
{

short i;

for (i=0; i<nr; i++) {
r[i] = ((m * x[i]) >> 15) + y[i];

}
}

Special Requirements

� nr >= 3

� Vectors x and y should be aligned on word boundary.

Implementation Notes

� Loading the input in word to double the performance.

� Using AND (.L) instead of EXTU (.S) to obtain y[2*i] from the word
containing y[2*i+1] and y[2*i] to reduce the requirement on .S unit.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Math

4-39DSPLIB Reference

Benchmarks

Cycles nr + 10 (even nr)

nr + 11 (odd nr)

Codesize 256 bytes

Matrix

 4-40

4.6 Matrix

4.6.1 Matrix Multiplicationmmul

void mmul(short *x, short r1, short c1, short *y, short r2, short c2,
short *r)

Arguments

x [r1*c1] Pointer to input matrix of size c1*r1

r1 number of rows in matrix x

c1 number of columns in matrix x

y [r2*c2] Pointer to input matrix of size r2*c2

r2 number of rows in matrix y

c2 number of columns in matrix y

r [r1*c2] Pointer to output matrix r of size r1*c2

Description Multiplies matrices x and y and stores the result in r.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
void mmul(short *x, short r1, short c1, short *y,
short r2, short c2, short *r)
{

short temp,i,j,k;
short *yp;

if((c1==r2)&(c1>0)&(c2>0)&(r1>0)) /*verify
/* parameters */

{
yp=y;
for(i=0; i<r1; i++) /* top to bottom */
{

for(j=0; j<c2; j++) /* left to right */
{

yp=y+j;
temp=0;
for(k=0; k<c1; k++) /* multiply and

/* add */
{

temp+=(*x)*(*yp);

Matrix

4-41DSPLIB Reference

x++;
yp+=c2;

}
x–=c1;
(r++)=temp; / store sum */

}
x+=c1;

}
}

}

Special Requirements

� Procedure will exit on invalid matrix dimensions.

� Elements of matrix assumed to be 16-bit signed integers.

� r1, c1, r2, and c2 are shorts.

� In-place processing not allowed.

� Memory bank hits will occur in different amounts dependent on
the dimensions and alignment of the matrices. This will cause
roughly a 10% increase in execution time. To eliminate this perfor-
mance hit, place input matrices in different memory spaces.

Implementation Notes

� The innermost loop multiplies and adds 4 times. The ADDs are
conditional so that the matrix dimensions do not have to be multi-
ples of 4.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 15 + ((6 * [c1/4] + 8) * c2 + 6) * r1

Codesize 512 bytes

4.6.2 Matrix Transposemat_trans

void mat_trans (short *x, short rows, short columns, short *r)

Arguments

x[rows*columns] Pointer to input matrix. In place processing is
not allowed.

rows Number of rows in the input matrix

Matrix

 4-42

columns Number of columns in the input matrix

r[columns*rows] Pointer to output data vector of size rows*col-
umns

Description This function transposes the input matrix.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void mat_trans(short *x, short rows, short columns,
short *r)
{

short i,j;
for(i=0; i<columns; i++)

for(j=0; j<rows; j++)
*(r+i*rows+j)=*(x+i+columns*j);

}

Special Requirements

� Rows and columns must not be negative numbers.

� Matrices are assumed to have 16-bit elements.

Implementation Notes

� The two loops are combined in one. The kernel is unrolled and pi-
pelined using conditional stores to not to write outside of output
array.

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 11 + 6 * [rows * columns / 3]

Codesize 192 bytes

Miscellaneous

4-43DSPLIB Reference

4.7 Miscellaneous

4.7.1 Block Exponent Implementationbexp

short bexp(int *x, short nx)

Arguments

x[nx] Pointer to input vector of size nx.

nx Number of elements in input vector. Must be a val-
ue between 1 and 24576 inclusive.

return short Return value is the maximum exponent that may be
used in scaling

Description Computes the exponents (number of extra sign bits) of all values in
the input vector and returns the minimum exponent. This will be useful
in determining the maximum shift value that may be used in scaling
a block of data.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
short bexp(const int *x, short nx)
{

int maxval=_norm(x[0]);
short nx;
int i;
for(i=1;i<nx;i++)
{

nx=_norm(x[i]); /*_norm(x) = number of*/
/*redundant sign bits*/

if(nx<maxval) maxval=nx;
}
return maxval;

}

Special Requirements

� 1 ≤ nx ≤ 24576

� Vector is Q31 format

Implementation Notes

� This function keeps track of 6 minimum exponent values in the in-
ner loop and finally the 6 exponent values are compared to find
the minimum among those 6. Conditional instructions were used
so that nx does not have to be a multiple of 6.

Miscellaneous

 4-44

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles nx>6 : 11 + 6 * [nx/6]

nx36: 15

Codesize 544 bytes

4.7.2 Block Moveblk_move

void blk_move(short *x, short *r, int nx)

Arguments

x [nx] Block of data to be moved

r [nx] Destination of block of data

nx Number of elements in block

Description This routine moves nx 16-bit elements from one memory location
pointed by x to another pointed by r.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

void blk_move(short *x,short *r, int nx)
{

short *tmpPtr;
short *tmpPtr2;

tmpPtr = x;
tmpPtr2 = r – 1;
for (tmpPtr = x; tmpPtr < x + nx; tmpPtr++)

*++tmpPtr2 = *tmpPtr;
}

Special Requirements

� nx ≥ 6

� nx is a multiple of 2

Miscellaneous

4-45DSPLIB Reference

Implementation Notes

� Two load words are used to load four 16-bit values at a time

� The loop is unrolled four times

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles nx / 2 + 5 (nx multiple of 4)

nx / 2 + 6 (other values of nx)

Codesize 160 bytes

4.7.3 Float to Q15 Conversionfltoq15

void fltoq15 (float *x, short *r, short nx)

Arguments

x[nx] Pointer to floating-point input vector of size nx. x
should contain the numbers normalized between
[–1,1).

r[nx] Pointer to output data vector of size nx containing
the q15 equivalent of vector x.

nx Length of input and output data vectors

Description Convert the IEEE floating point numbers stored in vector x into Q15
format numbers stored in vector r. All values that exceed the size limit
will be saturated to a Q15 1 or –1 depending on sign. (0x7fff if value
is positive, 0x8000 if value is negative) All values too small to be cor-
rectly represented will be truncated to 0.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
void fltoq15(float x[], short r[],short nx)
{

int i;
for(i=0;i<nx;i++) {

r[i] = 0x7fff * x[i];
}

}

Miscellaneous

 4-46

Special Requirements

� nx needs to be a multiple of 2

� nx >= 2

� No memory bank hits under any conditions

Implementation Notes

� Loop unrolled once

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles 7*nx + 12

Codesize 352 bytes

4.7.4 Minimum Energy Error Searchminerror

int minerror (short *GSP0_TABLE,short *errCoefs, int savePtr_ret)

Arguments

GSP0_TABLE[256] GSP0 terms array

errCoefs[9] Array of error coefficients

savePtr_ret Index of pair of vectors giving max dotprod

return int Maximum dot product result

Description Performs a dot product on 256 pairs of 9 element vectors and
searches for the pair of vectors which produces the maximum dot
product result. This is a large part of the VSELP vocoder codebook
search.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.

Miscellaneous

4-47DSPLIB Reference

int minerror(short *errCoefs, short *GSP0_TABLE,
int savePtr_ret)
{

int val, maxval;
int i, j;
short *tmpPtr;
short *tmpPtr2;
short *endPtr;
short *endPtr2;
short *savePtr;

#define GSP0_TERMS 9
#define GSP0_NUM 256

maxval = –50.0;
tmpPtr = GSP0_TABLE;
for (endPtr = tmpPtr + GSP0_TERMS*GSP0_NUM;
tmpPtr < endPtr;){
 val = 0;
 tmpPtr2 = errCoefs;

 for(endPtr2=tmpPtr2+GSP0_TERMS;tmpPtr2<endPtr2;
 tmpPtr2++){

 val += *tmpPtr * *tmpPtr2;
 tmpPtr++;

 }
 if (val > maxval) {

 maxval = val;
 savePtr = tmpPtr;

 }
}
savePtr_ret = (savePtr – GSP0_TABLE)*2;
return (maxval);

}

Special Requirements

� Number of error coefficients is 9

� Number of GSP0 terms is 256

Implementation Notes

� The inner loop is unrolled 2 times.

� No memory bank hits given errCoefs & GSP0_TABLE are both on
even or both on odd word boundaries (4 hits if not)

Miscellaneous

 4-48

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Benchmarks

Cycles (256/2) * 9 + 14 = 1166

Codesize 576 bytes

4.7.5 Q15 to Float Conversionq15tofl

void q15tofl (short *x, float *r, short nx)

Arguments

x[nx] Pointer to Q15 input vector of size nx

r[nx] Pointer to floating-point output data vector of size
nx containing the floating-point equivalent of vec-
tor x

nx Length of input and output data vectors

Description Converts the values stored in vector x in Q15 format to IEEE floating
point numbers in output vector r.

Algorithm This is the C equivalent of the assembly code without restrictions.
Note that the assembly code is hand optimized and restrictions may
apply.
void q15tofl(short *x, float *r, short nx)
{

int i;

for (i=0;i<nx;i++)
r[i] = (float) x[i] / 0x7fff;

}

Special Requirements nx must be a multiple of 2

Implementation Notes

� Loop unrolled once

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Miscellaneous

4-49DSPLIB Reference

Benchmarks

Cycles 17 * (nx / 2) + 6

Codesize 256 bytes

4.7.6 Codebook Search for VSELPv_srch

int v_srch (short *wiPtr, short *wBasisPtr, int numBasis, short *
TABLE, short *R, short *D)

Arguments

numBasis Number of weighted basis vectors

R[] Array of Rm values, the cross correlations between
weighted speech and weighted basis vectors

wiPtr[] Weighted speech vectors

TABLE[] Table of codewords

wbasisPtr[] Weighted basis vectors

D[] Matrix of Dmj values, the cross correlations be-
tween the weighted basis vectors

return int best codeword

Description Performs VSELP vocoder codebook search. This routine performs
the entire v_srch.c function as written by Motorola. It involves calculat-
ing correlations between weighted basis vectors and weighted
speech vector (Rms), C0, and 0.25 * sum of Djj for G0. It then calcu-
lates all Dmj and finishes calculating G0. It then initializes the best vec-
tor to be code vector zero and performs search by finding the vector
that produces the highest C^2/G value.

Algorithm The C source code for this was written by Motorola Systems Research
Laboratories and is authorized by Motorola for the use of development
of North American digital cellular standards. As such, the C code can-
not be shown here.

Special Requirements Vectors wiPtr and wBasisPtr have to be aligned on opposite word
boundaries to avoid memory hits.

Implementation Notes

� The assembly implementation assumes little-endian byte order-
ing.

� The assembly implementation of this function disables interrupts
for its entire duration and hence non-interruptible.

Miscellaneous

 4-50

Benchmarks

Cycles Loop 1: 342 ; Loop 2: 640 ; Loop 3: 2089

Total: 3071 cycles

Codesize 1504 bytes

A-1

Appendix A

Performance/
Fractional Q Formats

This appendix describes performance considerations related to the ’62x
DSPLIB and provides information about the Q format used by DSPLIB func-
tions.

Topic Page

A.1 Performance Considerations A-2.

A.2 Fractional Q Formats A-2.

Appendix A

Performance Considerations

 A-2

A.1 Performance Considerations

Although DSPLIB can be used as a first estimation of processor performance
for a specific function, you should be aware that the generic nature of DSPLIB
might add extra cycles not required for customer specific usage.

Benchmark cycles presented assume best case conditions, typically assum-
ing all code and data are placed in internal data memory. Any extra cycles due
to placement of code or data in external data memory or cache-associated
effects (cache-hits or misses) are not considered when computing the cycle
counts.

You should also be aware that execution speed in a system is dependent on
where the different sections of program and data are located in memory. You
should account for such differences when trying to explain why a routine is tak-
ing more time than the reported DSPLIB benchmarks.

A.2 Fractional Q Formats

Unless specifically noted, DSPLIB functions use Q15 format, or to be more
exact, Q0.15. In a Qm.n format, there are m bits used to represent the two’s
complement integer portion of the number, and n bits used to represent the
two’s complement fractional portion. m+n+1 bits are needed to store a general
Qm.n number. The extra bit is needed to store the sign of the number in the
most-significant bit position. The representable integer range is specified by
(� 2m, 2m) and the finest fractional resolution is 2�n.

For example, the most commonly used format is Q.15. Q.15 means that a
16-bit word is used to express a signed number between positive and negative
one. The most-significant binary digit is interpreted as the sign bit in any Q for-
mat number. Thus, in Q.15 format, the decimal point is placed immediately to
the right of the sign bit. The fractional portion to the right of the sign bit is stored
in regular two’s complement format.

A.2.1 Q3.12 Format

Q.3.12 format places the sign bit after the fourth binary digit from the right, and
the next 12 bits contain the two’s complement fractional component. The
approximate allowable range of numbers in Q.3.12 representation is (–8,8)
and the finest fractional resolution is 2�12

� 2.441 � 10�4.

Table A–1. Q3.12 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S I3 I2 I1 Q11 Q10 Q9 … Q0

Fractional Q Formats

A-3Performance/

A.2.2 Q.15 Format

Q.15 format places the sign bit at the leftmost binary digit, and the next 15 left-
most bits contain the two’s complement fractional component. The approxi-
mate allowable range of numbers in Q.15 representation is (–1,1) and the fin-
est fractional resolution is 2�15

� 3.05 � 10�5.

Table A–2. Q.15 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S Q14 Q13 Q12 Q11 Q10 Q9 … Q0

A.2.3 Q.31 Format

Q.31 format spans two 16-bit memory words. The 16-bit word stored in the
lower memory location contains the 16 least significant bits, and the higher
memory location contains the most significant 15 bits and the sign bit. The
approximate allowable range of numbers in Q.31 representation is (–1,1) and
the finest fractional resolution is 2�31

� 4.66 � 10�10.

Table A–3. Q.31 Low Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value Q15 Q14 Q13 Q12 … Q3 Q2 Q1 Q0

Table A–4. Q.31 High Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value S Q30 Q29 Q28 … Q19 Q18 Q17 Q16

B-1

Appendix A

Warranty and Support

This appendix provides information about warranty issues, software updates,
and customer support.

Topic Page

B.1 Warranty B-2.

B.2 DSPLIB Software Updates B-2.

B.3 DSPLIB Customer Support B-2.

Appendix B

Warranty

 B-2

B.1 Warranty

The ’C62x DSPLIB is distributed free of charge.

BETA RELEASE SPECIAL DISCLAIMER: This DSPLIB software release is
preliminary (Beta). It is intended for evaluation only. Testing and characteriza-
tion has not been fully completed. Production release typically follows the Beta
release but there are no explicit guarantees.

B.2 DSPLIB Software Updates

’C62x DSPLIB Software updates may be periodically released incorporating
product enhancements and fixes as they become available. You should read
the README.TXT available in the root directory of every release.

B.3 DSPLIB Customer Support

If you have questions or want to report problems or suggestions regarding the
’C62x DSPLIB, contact Texas Instruments at dsph@ti.com.

C-1

Appendix A

Glossary

A

address: The location of program code or data stored; an individually
accessible memory location.

A-law companding: See compress and expand (compand).

API: See application programming interface.

application programming interface (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions, direc-
tives, and macros. The assembler substitutes absolute operation codes
for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it.

autocor: Autocorrelation

B

bexp: Block exponent implementation

bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also little endian.

bitrev_cplx: Complex bit-reverse.

Appendix C

Glossary

 C-2

blk_move: Block move

block: The three least significant bits of the program address. These corre-
spond to the address within a fetch packet of the first instruction being
addressed.

board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals.

boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
’C6x DSP supports booting from external ROM or the host port interface
(HPI).

BSL: See board support library.

byte: A sequence of eight adjacent bits operated upon as a unit.

C
cache: A fast storage buffer in the central processing unit of a computer.

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

CCS: Code Composer Studio.

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the genera-
tion of data- and program-memory addresses. The CPU includes the
central arithmetic logic unit (CALU), the multiplier, and the auxiliary regis-
ter arithmetic unit (ARAU).

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals.

clock cycle: A periodic or sequence of events based on the input from the
external clock.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

code: A set of instructions written to perform a task; a computer program or
part of a program.

Glossary

C-3Glossary

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

compress and expand (compand): A quantization scheme for audio sig-
nals in which the input signal is compressed and then, after processing,
is reconstructed at the output by expansion. There are two distinct com-
panding schemes: A-law (used in Europe) and µ-law (used in the United
States).

control register: A register that contains bit fields that define the way a de-
vice operates.

control register file: A set of control registers.

CSL: See chip support library.

D

device ID: Configuration register that identifies each peripheral component
interconnect (PCI).

digital signal processor (DSP): A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host.

DMA : See direct memory access.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to destina-
tion).

dotp_sqr: Vector dot product and square.

dotprod: Vector dot product.

Glossary

 C-4

E

evaluation module (EVM): Board and software tools that allow the user to
evaluate a specific device.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory.

F

fast Fourier transform (FFT): An efficient method of computing the discrete
Fourier transform algorithm, which transforms functions between the
time domain and the frequency domain.

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary.

FFT: See fast fourier transform.

fir_cplx: Complex FIR filter (radix 2).

firlms2: LMS FIR (radix 2).

fir_r4: FIR filter (radix 4).

fir_r8: FIR filter (radix 8).

fir_gen: FIR filter (general purpose).

fir_sym: Symmetric FIR filter (radix 8).

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

fltoq 15: Float to Q15 conversion.

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the re-
quested fetch packet. The cache contains 512 frames.

Glossary

C-5Glossary

G

global interrupt enable bit (GIE): A bit in the control status register (CSR)
that is used to enable or disable maskable interrupts.

H

HAL: Hardware abstraction layer of the CSL. The HAL underlies the service
layer and provides it a set of macros and constants for manipulating the
peripheral registers at the lowest level. It is a low-level symbolic interface
into the hardware providing symbols that describe peripheral registers/
bitfields and macros for manipulating them.

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A parallel interface that the CPU uses to commu-
nicate with a host processor.

HPI: See host port interface; see also HPI module.

I

iir: IIR with 5 coefficients per biquad.

iir_cas4: IIR with 4 coefficients per biquad.

index: A relative offset in the program address that specifies which of the
512 frames in the cache into which the current access is mapped.

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

Glossary

 C-6

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP).

interrupt service routine (ISR): A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt service table (IST) A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it.

Internal peripherals: Devices connected to and controlled by a host device.
The ’C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port inter-
face (HPI), external memory-interface (EMIF), and runtime support tim-
ers.

IST: See interrupt service table.

L

lat_inv: Inverse lattice (radix 2).

lat_fwd: Forward lattice (radix 2).

least significant bit (LSB): The lowest-order bit in a word.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

Glossary

C-7Glossary

M

µ-law companding: See compress and expand (compand).

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software.

mat_trans: Matrix transpose.

maxidx: Index of the maximum element of a vector.

maxval: Maximum value of a vector.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

minerror: Minimum energy error search.

minval: Minimum value of a vector.

mmul: Matrix multiplication.

most significant bit (MSB): The highest order bit in a word.

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

mul32: 32-bit vector multiply.

N

neg32: 32-bit vector negate.

nonmaskable interrupt (NMI): An interrupt that can be neither masked nor
disabled.

Glossary

 C-8

O

object file: A file that has been assembled or linked and contains machine
language object code.

off chip: A state of being external to a device.

on chip: A state of being internal to a device.

P

peripheral: A device connected to and usually controlled by a host device.

program cache: A fast memory cache for storing program instructions al-
lowing for quick execution.

program memory: Memory accessed through the ‘C6x’s program fetch in-
terface.

PWR: Power; see PWR module.

PWR module: PWR is an API module that is used to configure the power-
down control registers, if applicable, and to invoke various power-down
modes.

Q

q15tofl: Q15 to float conversion.

R

radix2: Complex forward FFT (radix 2)

random-access memory (RAM): A type of memory device in which the
individual locations can be accessed in any order.

recip16: 16-bit reciprocal.

Glossary

C-9Glossary

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of micro-
programmed complex instruction set computers. The result is a higher
instruction throughput and a faster real-time interrupt service response
from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RTOS Real-time operating system.

r4fft: Complex forward FFT (radix 4)

S

service layer: The top layer of the 2-layer chip support library architecture
providing high-level APIs into the CSL and BSL. The service layer is
where the actual APIs are defined and is the layer the user interfaces to.

synchronous-burst static random-access memory (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

synchronous dynamic random-access memory (SDRAM): RAM whose
contents is refreshed periodically so the data is not lost. Transfer of data
is at a fixed rate relative to the clock speed of the device.

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries.

Glossary

 C-10

T

tag: The 18 most significant bits of the program address. This value corre-
sponds to the physical address of the fetch packet that is in that frame.

timer: A programmable peripheral used to generate pulses or to time
events.

TIMER module: TIMER is an API module used for configuring the timer reg-
isters.

V

v_srch: Codebook search for VSELP.

vecsumsq: Sum of squares.

W

w_vec: Weighted vector sum.

word: A multiple of eight bits that is operated upon as a unit. For the ‘C6x,
a word is 32 bits in length.

Index

Index-1

Index

A
A-law companding, defined, C-1

adaptive filtering, functions, 3-3

adaptive filtering functions, DSPLIB reference, 4-2

address, defined, C-1

API, defined, C-1

application programming interface, defined, C-1

argument conventions, 3-2

arguments, DSPLIB, 2-4

assembler, defined, C-1

assert, defined, C-1

autocor
defined, C-1
DSPLIB reference, 4-4

B
bexp, DSPLIB reference, 4-43

big endian, defined, C-1

bit, defined, C-1

bitrev_cplx, defined, C-1

bitrev_cplx, DSPLIB reference, 4-6

blk_move
defined, C-2
DSPLIB reference, 4-44

block, defined, C-2

board support library, defined, C-2

boot, defined, C-2

boot mode, defined, C-2

BSL, defined, C-2

byte, defined, C-2

C
cache, defined, C-2
cache controller, defined, C-2
CCS, defined, C-2
central processing unit (CPU), defined, C-2
chip support library, defined, C-2
clock cycle, defined, C-2
clock modes, defined, C-2
code, defined, C-2
coder-decoder, defined, C-3
compiler, defined, C-3
compress and expand (compand), defined, C-3
control register, defined, C-3
control register file, defined, C-3
correlation, functions, 3-3
correlation functions, DSPLIB reference, 4-4
CSL, defined, C-3
customer support, B-2

D
data types, DSPLIB, table, 2-4
device ID, defined, C-3
digital signal processor (DSP), defined, C-3
direct memory access (DMA)

defined, C-3
source, defined, C-3
transfer, defined, C-3

DMA, defined, C-3
datp_sqr, C-3
dotp_sqr, DSPLIB reference, 4-27
dotprod

defined, C-3
DSPLIB reference, 4-28

Index

Index-2

DSPLIB
argument conventions, table, 3-2
arguments, 2-4
arguments and data types, 2-4
calling a function from Assembly, 2-5
calling a function from C, 2-5

Code Composer Studio users, 2-5
customer support, B-2
data types, table, 2-4
features and benefits, 1-4
fractional Q formats, A-2
functional categories, 1-2
functions, 3-3

adaptive filtering, 3-3
correlation, 3-3
FFT (fast Fourier transform), 3-3
filtering and convolution, 3-4
math, 3-4
matrix, 3-5
miscellaneous, 3-5

how DSPLIB deals with overflow and scaling, 2-6
how to install, 2-2

under Code Composer Studio, 2-3
how to rebuild DSPLIB, 2-6
include directory, 2-3
introduction, 1-2
lib directory, 2-2
performance considerations, A-2
Q.3.12 bit fields, A-2
Q.3.12 format, A-2
Q.3.15 bit fields, A-3
Q.3.15 format, A-3
Q.31 format, A-3
Q.31 high-memory location bit fields, A-3
Q.31 low-memory location bit fields, A-3
reference, 4-1
software updates, B-2
testing, how DSPLIB is tested, 2-6
using DSPLIB, 2-4
warranty, B-2

DSPLIB reference
adaptive filtering functions, 4-2
autocor, 4-4
bexp, 4-43
bitrev_cplx, 4-6
blk_move, 4-44
correlation functions, 4-4
dotp_sqr, 4-27
dotprod, 4-28
FFT functions, 4-6

DSPLIB reference (continued)
filtering and convolution functions, 4-14
fir_cplx, 4-14
fir_r4, 4-17
fir_r8, 4-18
fir_sym, 4-20
firlms2, 4-2
fltoq15, 4-45
fir_gen, 4-15
iir, 4-21
iir_cas4, 4-23
lat_fwd, 4-24
lat_inv, 4-25
mat_trans, 4-41
math functions, 4-27
matrix functions, 4-40
maxidx, 4-30
maxval, 4-29
minerror, 4-46
minval, 4-31
miscellaneous functions, 4-43
mmul, 4-40
mul32, 4-32
neg32, 4-34
q15tofl, 4-48
r4fft, 4-11
radix2, 4-9
recip16, 4-35
v_srch, 4-49
vecsumsq, 4-37
w_vec, 4-38

E
evaluation module, defined, C-4

external interrupt, defined, C-4

external memory interface (EMIF), defined, C-4

F
fetch packet, defined, C-4

FFT, defined, C-4

FFT (fast Fourier transform), functions, 3-3

FFT functions, DSPLIB reference, 4-6

filtering and convolution, functions, 3-4

filtering and convolution functions,
DSPLIB reference, 4-14

Index

Index-3

fir_cplx
defined, C-4
DSPLIB reference, 4-14

fir_gen
defined, C-4
DSPLIB reference, 4-15

fir_r4
defined, C-4
DSPLIB reference, 4-17

fir_r8
defined, C-4
DSPLIB reference, 4-18

fir_sym
defined, C-4
DSPLIB reference, 4-20

firlms2
defined, C-4
DSPLIB reference, 4-2

flag, defined, C-4

fltoq 15, defined, C-4

fltoq15, DSPLIB reference, 4-45

fractional Q formats, A-2

frame, defined, C-4

function
calling a DSPLIB function from Assembly, 2-5
calling a DSPLIB function from C, 2-5

Code Composer Studio users, 2-5
functions, DSPLIB, 3-3

G
GIE bit, defined, C-5

H
HAL, defined, C-5

host, defined, C-5

host port interface (HPI), defined, C-5

HPI, defined, C-5

I
iir

defined, C-5
DSPLIB reference, 4-21

iir_cas4
defined, C-5
DSPLIB reference, 4-23

include directory, 2-3
index, defined, C-5
indirect addressing, defined, C-5
installing DSPLIB, 2-2
instruction fetch packet, defined, C-5
internal interrupt, defined, C-5
internal peripherals, defined, C-6
interrupt, defined, C-6
interrupt service fetch packet (ISFP), defined, C-6
interrupt service routine (ISR), defined, C-6
interrupt service table (IST), defined, C-6
IST, defined, C-6

L
lat_fwd, DSPLIB reference, 4-24
lat_fwd**Empty**, defined, C-6
lat_inv

defined, C-6
DSPLIB reference, 4-25

least significant bit (LSB), defined, C-6
lib directory, 2-2
linker, defined, C-6
little endian, defined, C-6

M
µ-law companding, defined, C-7
maskable interrupt, defined, C-7
mat_trans

defined, C-7
DSPLIB reference, 4-41

math, functions, 3-4
math functions, DSPLIB reference, 4-27
matrix, functions, 3-5
matrix functions, DSPLIB reference, 4-40
maxidx

defined, C-7
DSPLIB reference, 4-30

maxval
defined, C-7
DSPLIB reference, 4-29

memory map, defined, C-7

Index

Index-4

memory-mapped register, defined, C-7

minerror
defined, C-7
DSPLIB reference, 4-46

minval
defined, C-7
DSPLIB reference, 4-31

miscellaneous, functions, 3-5

miscellaneous functions, DSPLIB reference, 4-43

mmul
defined, C-7
DSPLIB reference, 4-40

most significant bit (MSB), defined, C-7

mul32
defined, C-7
DSPLIB reference, 4-32

multichannel buffered serial port (McBSP),
defined, C-7

multiplexer, defined, C-7

N
neg32

defined, C-7
DSPLIB reference, 4-34

nonmaskable interrupt (NMI), defined, C-7

O
object file, defined, C-8

off chip, defined, C-8

on chip, defined, C-8

overflow and scaling, 2-6

P
performance considerations, A-2

peripheral, defined, C-8

program cache, defined, C-8

program memory, defined, C-8

PWR, defined, C-8

PWR module, defined, C-8

Q
Q.3.12 bit fields, A-2

Q.3.12 format, A-2

Q.3.15 bit fields, A-3

Q.3.15 format, A-3

Q.31 format, A-3

Q.31 high-memory location bit fields, A-3

Q.31 low-memory location bit fields, A-3

q15tofl
defined, C-8
DSPLIB reference, 4-48

R
r4fft

defined, C-9
DSPLIB reference, 4-11

radix2
defined, C-8
DSPLIB reference, 4-9

random-access memory (RAM), defined, C-8

rebuilding DSPLIB, 2-6

recip16
defined, C-8
DSPLIB reference, 4-35

reduced-instruction-set computer (RISC),
defined, C-9

register, defined, C-9

reset, defined, C-9

routines, DSPLIB functional categories, 1-2

RTOS, defined, C-9

S
service layer, defined, C-9

software updates, B-2

STDINC module, defined, C-9

synchronous dynamic random-access memory
(SDRAM), defined, C-9

synchronous-burst static random-access memory
(SBSRAM), defined, C-9

syntax, defined, C-9

system software, defined, C-9

Index

Index-5

T

tag, defined, C-10

testing, how DSPLIB is tested, 2-6

timer, defined, C-10

TIMER module, defined, C-10

U

using DSPLIB, 2-4

V
v_srch

defined, C-10
DSPLIB reference, 4-49

vecsumsq
defined, C-10
DSPLIB reference, 4-37

W
w_vec

defined, C-10
DSPLIB reference, 4-38

warranty, B-2
word, defined, C-10

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments

	Contents
	Tables
	Introduction
	Introduction to the TI ’62x DSPLIB
	Features and Benefits

	Installing and Using DSPLIB
	How to Install DSPLIB
	Code Composer Studio Users

	Using DSPLIB
	DSPLIB Arguments and Data Types
	DSPLIB Types
	DSPLIB Arguments

	Calling a DSPLIB Function From C
	Code Composer Studio Users

	Calling a DSP Function From Assembly
	How DSPLIB is Tested – Allowable Error
	How DSPLIB Deals With Overflow and Scaling Issues

	How to Rebuild DSPLIB

	DSPLIB Function Tables
	Arguments and Conventions Used
	DSPLIB Functions
	DSPLIB Function Tables

	DSPLIB Reference
	Adaptive Filtering
	firlms2 - LMS FIR (radix 2)

	Correlation
	autocor - Autocorrelation

	FFT
	bitrev_vplx - Complex Bit-Reverse
	radix2 - Complex Forward FFT (radix 2)
	r4fft - Complex Forward FFT (radix 4)

	Filtering and Convolution
	fir_cplx - Complex FIR Filter (radix 2)
	fir_gen - FIR Filter (general purpose)
	fir_r4 - FIR Filter (radix 4)
	fir_r8 - FIR Filter (radix 8)
	fir_sym - Symmetric FIR Filter (radix 8)
	iir - IIR with 5 Coefficients per Biquad
	iir_cas4 - IIR with 4 Coefficients per Biquad
	lat_fwd - Forward Lattice (radix 2)
	lat_inv - Inverse Lattice (radix 2)

	Math
	dotp_sqr - Vector Dot Product & Square
	dotprod - Vector Dot Product
	maxval - Maximum Value of a Vector
	maxidx - Index of the Maximum Element of a Vector
	minval - Minimum Value of a Vector
	mul32 - 32-bit Vector Multiply
	neg32 - 32-bit Vector Negate
	recip16 - 16-bit Reciprocal
	vecsumsq - Sum of Squares
	w_vec - Weighted Vector Sum

	Matrix
	mmul - Matrix Multiplication
	mat_trans - Matrix Transpose

	Miscellaneous
	bexp - Block Exponent Implementation
	blk_move - Block Move
	fltoq15 - Float to Q15 Conversion
	minerror - Minimum Energy Error Search
	q15tofl - Q15 to Float Conversion
	v_srch - Codebook Search for VSELP

	Performance/ Fractional Q Formats
	Performance Considerations
	Fractional Q Formats
	Q3.12 Format
	Q.15 Format
	Q.31 Format

	Warranty and Support
	Warranty
	DSPLIB Software Updates
	DSPLIB Customer Support

	Glossary
	Index

