
Application Report
SPRA598 - November 1999

1

An Audio Example Using DSP/BIOS
Shawn Dirksen Digital Signal Processing Solutions

ABSTRACT

Data transfer is essential for any digital signal processing application. Texas Instruments
(TI) DSP/BIOS kernel provides basic runtime services used for managing data transfer. The
DSP/BIOS pipes are used to buffer streams of program input and output data. Data transfer
is scheduled through the use of DSP/BIOS software interrupts. These software interrupts,
patterned after hardware interrupt routines, are the foundation for structuring DSP/BIOS
applications in a prioritized hierarchy of real-time threads.

This audio example demonstrates how to use DSP/BIOS APIs for scheduling data transfer
between the hardware I/O peripherals and the target DSP.

Contents

1 Introduction to Foundational Software 2.

2 Overview of DSP/BIOS SWI and PIP Modules 3.
2.1 Software Interrupt or SWI Module 3.
2.2 Pipe or PIP Module 4.

3 An Audio Example 5.
3.1 About the Example 5.
3.2 Configuration Setup 7.
3.3 Reviewing the Code 12.
3.4 Debugging and Testing With DSP/BIOS Real-Time Analysis Tools 12.
3.5 Adding a Periodic Object 14.
3.6 Running With a Periodic Function 15.
3.7 Increasing the Number of Frames 16.
3.8 Getting Your Priorities Straight 16.
3.9 Reviewing the ISR Code: The Assembly Interface 17.
3.10 Using a C ISR 21.
3.11 Things to Try 22.

4 Summary/Conclusion 23.

List of Figures

Figure 1. DSP/BIOS Real-Time Analysis Tools 2.
Figure 2. DSP/BIOS Configuration Tool 3.
Figure 3. Prioritization of DSP/BIOS Threads 4.
Figure 4. DSP/BIOS Data Pipes (PIP Module) 4.
Figure 5. Diagram of the Audio Example 6.
Figure 6. DSS_rxPrime and DSS_txPrime 10.

2 An Audio Example Using DSP/BIOS

1 Introduction to Foundational Software

The ability for digital signal processors to handle high-speed arithmetic, I/O and interrupt
processing requires basic scheduling and I/O services. The DSP/BIOS foundation software,
included in Code Composer Studio, furnishes a small firmware kernel with basic run-time
services that software developers can embed on target DSP hardware. DSP/BIOS includes
optimized run-time services such as low-latency threading and scheduling along with a data pipe
managers designed to manage block I/O(also called stream-based or asynchronous I/O). The
embedded DSP/BIOS run-time library and DSP/BIOS plug-ins support a new generation of
testing and diagnostic tools that allows developers and integrators to probe, trace, and monitor a
DSP application during its course of execution (see Figure 1. DSP/BIOS Real-Time Analysis
Tools) This real-time monitoring lets you view the system running in real-time so that you can
effectively debug and performance-tune your system before deployment.

event state unknown
event runnung

ready to run missed real–time

maximum
processor

load

statistics accu-
mulators

Figure 1. DSP/BIOS Real-Time Analysis Tools

SPRA598

3 An Audio Example Using DSP/BIOS

Your target application is designed using the DSP/BIOS Configuration Tool for creating and
assigning attributes to individual run-time objects (threads, streams, etc.). Unlike other systems
in which object creation and initialization occur at run-time thought supplementary API calls,
incurring further target overhead –especially code space-, all DSP/BIOS objects are statically
configured and bound into an executable program image using hosted tools. In addition to
minimizing the target memory footprint by eliminating run-time code and optimizing the layout of
internal data structures, the static configuration strategy pursued by the DSP/BIOS Configuration
Tool provides the means for early detection of semantic errors through validation of object
attributes prior to program execution.

The DSP/BIOS Configuration Tool serves as a visual editor for creating run-time objects that are
used on the target application through the DSP/BIOS APIs. This graphical tool makes it easy for
a developer to control a wide range of parameters.

Figure 2. DSP/BIOS Configuration Tool

2 Overview of DSP/BIOS SWI and PIP Modules

The DSP/BIOS kernel is internally organized around a collection of discrete firmware modules,
each implementing a coherent subset of the run-time services invoked by the target through
kernel APIs. Individual modules in general will manage one or more instances of a related class
of kernel objects and will rely upon global parameter values to control their overall behavior, all
of which are statically defined using the DSP/BIOS Configuration Tool.

2.1 Software Interrupt or SWI Module

The SWI module manages software interrupt service routines, which are patterned after HWI
hardware interrupt routines, are triggered programmatically through DSP/BIOS API calls, such
as SWI_post, from client threads. Once triggered, execution of a SWI routine will strictly preempt
any current background activity within the program as well as any SWIs of lower priority; HWI
hardware interrupt routines on the other hand take precedence over SWIs and remain enabled
during execution of all handlers, allowing timely response to hardware peripherals with the target
system. Software interrupts or SWIs provide a range of threads that have intermediate priority
between HWI functions and the background idle loop.

SPRA598

4 An Audio Example Using DSP/BIOS

Time

P
rio

rit
y

Highest

HWI

SWI

SWI

SWI

IDL

Figure 3. Prioritization of DSP/BIOS Threads

2.2 Pipe or PIP Module

The DSP/BIOS Buffered Pipe Manager or PIP Module manages block I/O (also called
stream-based or asynchronous I/O) used to buffer streams of program input and output typically
processed by embedded DSP applications. Each pipe object maintains a buffer divided into a
fixed number of fixed length frames, specified by the numframes and framesize properties. All I/O
operations on a pipe deal with one frame at a time. Although each frame has a fixed length, the
application may put a variable amount of data in each frame (up to the length of the frame). Note
that a pipe has two ends. The writer end is where the program writes frames of data. The reader
end is where the program reads frames of data.

PIP Alloc

PIP_get

PIP_put (runsNotifyReader) PIP_free (runsnotifyWriter)

Writer Reader

Figure 4. DSP/BIOS Data Pipes (PIP Module)

SPRA598

5 An Audio Example Using DSP/BIOS

Data notification functions (notifyReader and notifyWriter) are performed to synchronize data
transfer. These functions are triggered when a frame of data is read or written to notify the
program that a frame is free or data is available. These functions are performed in the context of
the function that calls PIP_free or PIP_put. They may also be called from the thread that calls
PIP_get or PIP_alloc. After PIP_alloc is called, DSP/BIOS checks whether there are more full
frames in the pipe. If so, the notifyReader function is executed. After PIP_alloc is called,
DSP/BIOS whether there are more empty frames in the pipe. If so, the notifyWriter function is
executed.

A pipe should have a single reader and a single writer. Often, one end of a pipe is controlled by
a hardware ISR (ex: Serial Port Receiver ISR) and on the other end is controlled by a software
interrupt function. Pipes can also be used to transfer data within the program between two
application threads.

Next, we use two DSP/BIOS Data Pipes in the audio example to move data between the
software interrupt function called audioSWI and a serial port connected to the codec.

3 An Audio Example

This audio example demonstrates how to use DSP/BIOS APIs for scheduling data transfer
between hardware I/O peripherals and the target DSP. This example has been provided to assist
with development for your DSP application program. The following steps will guide you through
the audio example setup, how to use the DSP/BIOS Configuration Tool and how to use the
DSP/BIOS Real-Time Analysis Tools for debugging/testing program code. This example has
been installed in both the C5000 or C6000 Code Composer Studio products and can be found in
the ...\ti\c6000\examples\bios\audio or ...\ti\c5400\examples\bios\audio directories.

3.1 About the Example

The function audio is written in C and is located in the source code file audio.c found in the
...\ti\c6000\examples\bios\audio directory. Two pipe objects are used to exchange data
between the software interrupt and the serial port connected to the codec. These pipes are
DSS_rxPipe and DSS_txPipe . Data input from the codec flows from the serial port Interrupt
Service Routine (ISR) through DSS_rxPipe to the software interrupt, where it is copied to
DSS_txPipe and sent back to the serial port ISR to be transmitted out through the codec, as
shown in Figure 5.

SPRA598

6 An Audio Example Using DSP/BIOS

DSS_rxPipe DSS_txPipe

Audio Software Interrupt

Serial Port Receive ISR

DRR DXR

Serial Port

CodecAudio Source Speaker

IN OUT

Figure 5. Diagram of the Audio Example

The ISR for the serial port receive interrupt copies each new 32 bit data sample in the Data
Receive Register (DRR) to a frame from the DSS_rxPipe pipe object. When the frame is full, the
ISR puts the frame back into DSS_rxPipe to be read by the audio function.

As the audio function will just read a frame from DSS_rxPipe and copy it to a frame in
DSS_txPipe. The transmit rate will be the same as the receive rate: 48 kHz. This allows us to
further simplify the example by enabling only the receive interrupt for the serial port. The
transmit interrupt for the serial port is not enabled.

The ISR for the receive interrupt will also take care of the transmit process in the serial port.

It will take a full frame from DSS_txPipe and write a 32-bit word from the frame to the 32-bit
serial port Data Transmit Register (DXR) each time the interrupt is handled. When the whole
frame has been transmitted, the empty frame is recycled back to DSS_txPipe for reuse by the
audio function.

The function DSS_init (found in dss.c) takes care of the initialization of the serial port and the
codec. DSS_init programs the sampling rate of the codec and sets the bits in IMR and IFR to
enable the serial port receive interrupt, etc. Notice the following:

• DSS_init does not enable interrupts and should be called before interrupts are enabled by
DSP/BIOS at the return from main.

• DSS_init does not set up the interrupt vector table to call the ISR for the serial port receive
interrupt. This is performed and setup with the HWI – Hardware Interrupt Service Routine
Manager in the DSP/BIOS Configuration Tool.

SPRA598

7 An Audio Example Using DSP/BIOS

3.2 Configuration Setup

All DSP/BIOS objects are pre-configured and bound into an executable program image. This is
done through the DSP/BIOS Configuration Tool. When you save a configuration file, the
Configuration Tool creates assembly and header files and a linker command file to match your
settings. These files that are then linked with your code when building your application program.
See the sections “Using the Configuration Tool” in the DSP/BIOS User’s Guide and/or “Creating
a Configuration File” in the Code Composer Studio Tutorial for more information.

The following DSP/BIOS objects will be setup/created in this section:

• A software interrupt, audioSWI , to run the audio function.

• Two data pipes, DSS_rxPipe and DSS_txPipe , to exchange data between audioSWI and
the ISR for the serial port receive interrupt.

• Plug in the corresponding ISR for the serial port using the HWI – Hardware Interrupt Service
Routine Manager

You begin by opening the project with Code Composer Studio and examining the source code
files and libraries used in that project.

1. If you installed Code Composer Studio in c:\ti , create a folder called audio in the
c:\ti\myprojects folder . (If you installed elsewhere, create a folder within the myprojects
folder in the location where you installed.)

2. Copy all files from the c:\ti\c6000\examples\bios\audio folder to this new folder.

3. From the Windows Start menu, choose Programs –> Code Composer Studio ‘C6000’ –>
Code Composer Studio.

4. Choose Project –> New. Type in audio.mak for the file name in the folder you created and
click Save.

5. Choose File –> New –> DSP/BIOS Configuration.

6. Select the template for your DSP board and click OK.

7. Right-click on the LOG – Event Log Manager and choose the Insert LOG from the pop-up
menu. This creates a LOG object called LOG0.

8. Right-click on the name of the LOG0 object and choose Rename from the pop-up menu.
Change the object’s name to trace and change the buffer length property to 256.

9. Right-click on the name of the LOG_system object and choose properties. Change the
buffer length property to 256.

10. Right-click on the SWI – Software Interrupt Manager and choose Insert SWI. Rename the
new SWI0 object audioSWI .

11. Right-click on audioSWI and select Properties from the menu. In the audioSWI properties
window, enter _audio for the function , 3 for the mailbox , DSS_rxPipe for arg0 , and
DSS_txPipe for arg1 . Click OK to save your changes.

SPRA598

8 An Audio Example Using DSP/BIOS

12. Right-click on the PIP – Buffered Pipe Manager and choose Insert PIP twice. Rename the
first pipe to DSS_rxPipe and the second pipe to DSS_txPipe .

13. Right-click on the DSS_rxPipe and select Properties from the menu. Enter the following
properties for DSS_rxPipe :

Click OK to save your changes.

SPRA598

9 An Audio Example Using DSP/BIOS

14. Right-click on the DSS_txPipe and select Properties from the menu. Enter the following
properties for DSS_txPipe :

Click OK to save your changes.

SPRA598

10 An Audio Example Using DSP/BIOS

When a full frame is put in DSS_rxPipe the notifyReader function will clear the second bit in
the mailbox for audioSWI . When an empty frame is available in DSS_txPipe , the first bit in
the mailbox for audioSWI is cleared. In this way, audioSWI is posted only when there is a
full frame available in DSS_rxPipe and an empty frame available in DSS_txPipe .

The notifyWriter for DSS_rxPipe , DSS_rxPrime , is a C function that can be found is dss.c .
DSS_rxPrime calls PIP_alloc to allocate an empty frame from DSS_rxPipe that will be used
by the ISR to write the data received from the codec. DSS_rxPrime is called whenever an
empty frame is available in DSS_rxPipe (and the ISR is done with the previous frame). The
ISR calls DSS_rxPrime after it is done filling up a frame (see Figure 6)

The notifyReader for DSS_txPipe , DSS_txPrime , is a C function that can be found is
dss.c . DSS_txPrime calls PIP_get to get a full frame from DSS_txPipe . The data in this
frame will be transmitted by the ISR to the codec. DSS_txPrime is called whenever a full
frame is available in DSS_txPipe (and the ISR is done transmitting the previous frame). The
ISR calls DSS_txPrime after it is done transmitting a frame to get the next full frame. See
Figure 6.

Serial Port Receive ISR

DSS_rxPipe DSS_txPipe

PIP_put PIP_free

DSS_rxPrime DSS_rxPrime

PIP_free PIP_get PIP_alloc PIP_put

audio function

PIP_alloc PIP_get

Figure 6. DSS_rxPrime and DSS_txPrime

SPRA598

11 An Audio Example Using DSP/BIOS

Now we need to plug in the corresponding ISR for the serial port.

15. Click on the + next to the HWI – Hardware Interrupt Service Routine Manager to display
its objects. Each of these objects corresponds to an interrupt in the TMS320C62x interrupt
vector table. Right-click on the HWI_INT11 and select properties. Choose the interrupt
source that corresponds to the Multichannel Buffered Serial Port 0 Receive Interrupt
(MCSP_0_Receive). Also, change the function to _DSS_isr similar to the following:

Click OK to save your changes.

By entering _DSS_isr in the function field, DSP/BIOS will set the TMS320C62x interrupt
vector table to jump to _DSS_isr to handle the serial port receive interrupt.

16. Right-click on the SWI – Software Interrupt Manager object and select Properties from the
menu. Select microseconds in the Statistics Units field. This will cause the DSP/BIOS
Real-Time Analysis Tools to display the statistic data for the software interrupt in
microseconds.

17. Save the configuration file as audio.cdb . If asked to replace the existing file; click Yes.

18. Choose Project –> Add Files to Project. Select Configuration File (*.cdb) in the Files of
type box. Select the audio.cdb file and click Open. Notice that the Project View now
contains audio.cdb in a folder called DSP/BIOS Config. In addition, the audiocfg.s62 file is
now listed as a source file.

19. The output file name must match the .cdb file name (audio.out and audio.cdb). Go to
Project –> Options and choose the Linker tab. Verify the Output Filename field as
audio.out .

20. Choose Project –> Add Files to Project again. Select Linker Command File (*.cmd) in the
Files of type box. Select the audiocfg.cmd file and click Open.

21. Choose Project –> Add Files to Project again. Select Source Files (*.c,*s,*.a*) in the Files
of type box. Select the dss.c , audio.c , dss_evm62.c , dss_aisr.s62, audio_ld.s62 files
and click Open.

22. Choose Project –> Rebuild All

SPRA598

12 An Audio Example Using DSP/BIOS

3.3 Reviewing the Code

Review the code for audio in audio.c (the ISR will be described at the end of this chapter).
Notice that audio gets a full frame from DSS_rxPipe and an empty frame from DSS_txPipe ,
and copies the contents of the input frame to the output frame. The audio function will only run
when there is a full frame available in DSS_rxPipe and an empty frame available in
DSS_txPipe .

/*
 * ======== audio ========
 */
Void audio(PIP_Obj *in, PIP_Obj *out)
{
 Uns *src, *dst;
 Uns size;

 if (PIP_getReaderNumFrames(in) == 0 || PIP_getWriterNumFrames(out) == 0) {
 error();
 }

 /* get input data and allocate output buffer */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output buffer */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out,size);

 for (; size > 0; size––) {
 *dst++ = *src++;
 }

 /* output copied data and free input buffer */
 PIP_put(out);
 PIP_free(in);
}

3.4 Debugging and Testing With DSP/BIOS Real-Time Analysis Tools

To run this example you will need to connect the codec input to some acoustical signal. For
example, if your PC has a CD-ROM, you can use it to play a CD and connect the earphone’s
output of the CD-ROM to the board’s input jack. The output on the board needs to be connected
to some output device, e.g., a speaker.

Once the board is connected to an input and output device, start the input signal (e.g., start
playing the CD in the CD-ROM).

1. Choose File –> Load Program. Select the program you just built, audio.out, and click
Open.

2. Choose Debug –> Go Main. The program runs to the first statement in the main function.

SPRA598

13 An Audio Example Using DSP/BIOS

3. Choose Tools –> DSP/BIOS –> RTA Control Panel. You see several check boxes at the
bottom of the Code Composer Studio window.

4. Right-click on the area that contains the check boxes and deselect Allow Docking, or
select Float in Main Window, to display the RTA Control Panel in a separate window.
Resize the window so that you can see all of the check boxes shown here.

5. Put check marks in the boxes shown here to enable SWI and CLK logging, SWI
accumulators and globally enable tracing on the host.

6. Choose Tools –> DSP/BIOS –> CPU Load Graph.

7. Choose Tools –> DSP/BIOS –> Execution Graph. The Execution Graph appears at the
bottom of the Code Composer Studio window. You may want to resize this area or display
it as a separate window.

8. Right-click on the RTA Control Panel and choose Property Page from the pop-up menu.

9. Verify that the Refresh Rate for Message Log/Execution Graph is 1 second and click OK.

10. Choose Debug –> Run or click the (Run) toolbar button. You should be able to hear the
acoustic signal out of the speaker. The Execution Graph should look similar to this:

11. Count the marks between times the audioSWI object was running. It should be running
every 2 milliseconds. You can see that in between 2 consecutive execution of audioSWI
there are 2 system clock ticks (each clock tick corresponds to 1 msec). The audio function

SPRA598

14 An Audio Example Using DSP/BIOS

runs every timer there is a full frame in DSS_rxPipe and an empty frame in DSS_txPipe .
The ISR is running every 1/48000 microseconds, writing and reading a word at a time. For
96 word frames, the ISR needs to execute 96 times before filling up a frame. Therefore,
the audio should be running every 96/48000 microseconds, i.e., 2 milliseconds.

3.5 Adding a Periodic Object

We are going to add a new function to our application that runs periodically at intervals of 8
milliseconds. The code for this function, called load , is in audio.c .
/*
 * ======== load ========
 */
Void load(Int prd_ms)
{
 static int oldLoad = 0;
 /* display confirmation of load changes */
 if (oldLoad != loadVal) {
 oldLoad = loadVal;
 LOG_printf(&trace,
 ”load: new load = %d000 instructions every %d ms”, loadVal, prd_ms);
 }

 if (loadVal) {
 AUDIO_load(loadVal);
 }
}

loadVal is a global variable that is initially set to 0. AUDIO_load is an assembly routine that
simulates a process that uses up cycles on the CPU. (You can find the source code for
AUDIO_load in AUDIO_LD.S62.)

SPRA598

15 An Audio Example Using DSP/BIOS

Using the DSP/BIOS Real-Time Analysis Tools you can set how much CPU load load takes up
by changing the value of the global variable loadVal .

1. In Code Composer Studio, open audio.cdb . Right-click on the Periodic Function Manager
and select Insert PRD from the menu.

2. Rename the new PRD object to loadPrd . Right-click on it and select Properties from the
menu. Enter the properties for this periodic object as follows:

Click OK to save your changes.

3. Choose Project –> Rebuild All and rebuild audio.out

3.6 Running With a Periodic Function

1. Choose File –> Reload Program menu item in Code Composer Studio to reload
audio.out .

2. Choose Debug –> Run

3. Choose the View –> Watch Window menu item. In the Watch Window, Insert New
Expression loadVal .

4. In the Trace State window, turn off CLK logging. Click on PRD logging.

5. Observe the Execution Graph window. You will see the loadPRD function executed every
8 system ticks. In the STS window for audioSWI , you will notice that the maximum value
for the signal is well under the 2 millisecond deadline.

6. In the Data Memory window, double click loadVal and Edit Variable to 100. Following this
you should see the CPU load increase. The AUDIO_load function simulates a CPU load
that is 1000 * loadVal . Do you observe this increase?

7. If you put too large of a value in loadVal , notice the CPU Load graph and the Execution
Graph stop updating. This is because the updates are performed within an idle task, which

SPRA598

16 An Audio Example Using DSP/BIOS

has the lowest execution priority within the program. Because the higher-priority threads
are using all the processing time, there is not enough time for the host control updates to
be performed. The program is now missing its real-time deadline. Putting a smaller value
in loadVal will continue target/host communication.

8. Observe the STS data for audioSWI . The increase in the load of the periodic function
raised the maximum, but it is still under the real time deadline of 2 milliseconds for
audioSWI .

9. Increase loadVal by entering new values in the Data Memory window. Try 150, 200, etc.
Observe the increase on the CPU load and the Max field for the audioSWI STS . Observe
how eventually the audioSWI STS maximum reaches more than 2 milliseconds, and the
application starts to miss real time. You will notice this as you start to hear the quality of
the acoustic signal output getting worse. Write down the value of loadVal that causes the
application to start missing real time.

10. In the System Log window, observe how the increase in loadVal lengthened the amount
of time it took for loadPRD to execute. (You can see this by counting the number of
system ticks that came in while loadPRD was running).

3.7 Increasing the Number of Frames

An increase in the load of loadPRD makes the example miss real time: when loadPRD takes
too long to finish, it makes audioSWI start executing late, since audioSWI has to wait until
loadPRD is done. With only 2 frames, the ISR may finish filling up (or transmitting) one of the
frames before audioSWI , delayed by loadPRD , has had a chance to copy the other frame and
release it back to the pipe. As a result, interrupts will occur before a new frame is available,
resulting in a loss of data by the ISR. To address this problem you can increase the number of
frames on each pipe, so there is another frame available for the ISR to fill up while audioSWI is
delayed.

1. Open audio.cdb inside Code Composer Studio.

2. Open the Buffered Pipe Manager object, and highlight DSS_rxPipe . Right-click to bring up
the Properties window and change the number of frames in the numframes field to 3.
Click OK to save your changes.

3. Repeat the same procedure with DSS_txPipe .

4. Choose Project –> Rebuild All and save the changes.

5. Reload audio.out and choose Debug –> Run.

6. Choose View –> Memory window, enter the value for loadVal that you had previously
written down. Does the quality of sound deteriorate?

7. Observe the STS window for audioSig . Is the Maximum under 2 msec? Is audioSWI
meeting its deadline?

8. Keep increasing loadVal . The application will eventually run into the same problem as
before, and audioSWI will start missing real time again.

3.8 Getting Your Priorities Straight

Adding a new buffer seemed to solve the situation until loadVal became too large, and the
application started to miss real time again. Why did this happen?

SPRA598

17 An Audio Example Using DSP/BIOS

When audioSWI was posted, it did not run immediately but had to wait until loadPRD finished.
When loadPRD started to take more than 2 milliseconds to execute, it caused the audioSWI
waiting for it to be late for its 2 milliseconds deadline. When we added a new buffer, we
increased the amount of time that audioSWI could be late, as there was an extra buffer that the
ISR could continue to fill. However, this kind of arrangement will not help us indefinitely. If
loadVal becomes large enough, eventually audioSWI will be delayed long enough that the ISR
will run out of available frames.

To solve this situation we need audioSWI to be able to preempt the periodic software interrupt
(PRD_swi) that calls loadPRD . If audioSWI can preempt PRD_swi , audioSWI will run
whenever it is posted, regardless of whether loadPRD is finished, because it will take away the
control of the CPU (preempt) from the periodic function. Since audioSWI is no longer delayed
by loadPRD , the load of loadPRD will no longer make our application miss real time.

1. Open audio.cdb inside Code Composer Studio. Click on the Software Interrupt Manager
object to highlight it.

2. On the right pane, drag audioSWI above PRD_swi . audioSWI becomes the highest
priority software interrupt.

3. Choose Project –> Rebuild All and save the changes.

Follow the same steps as in the previous section and observe how audioSWI does not miss real
time when loadVal is increased. Note in the Message Log window how audioSWI preempts
loadPRD . Note in the STS window for audioSWI how the maximum remains constant
regardless of changes to loadVal .

3.9 Reviewing the ISR Code: The Assembly Interface

The code for the serial port receive interrupt ISR can be found in DSS_AISR.S62. Most of the
ISR is written in assembly. We will use the ISR code to illustrate the DSP/BIOS assembly
interface.
; ======== dss_aisr.s62 ========
;
 .include c62.h62
 .include hwi.h62
 .include pip.h62

 .include dss.h62

DRR .set 0x018c0000 ; Data Receive Register McBSP 0
DXR .set 0x018c0004 ; Data Transmit Register McBSP 0
 .bss rtxDone,4,4 ; Allocate temp variable in .bss to
 ; allow loads via b14. No cinit
 ; recordneeded because ISR writes to
 ; this location before it reads it.
 .text
 .global _DSS_isr, rtxDone, rxErr, txErr
;
; ====== _DSS_aisr ======
;
_DSS_isr:

(1)

(2)

SPRA598

18 An Audio Example Using DSP/BIOS

 stw a0,*b15––[2] ; push temp registers
 stw a1,*b15––[2]
 stw a2,*b15––[2]
 stw b1,*b15––[2]
 stw b2,*b15––[2]
 ; rxDone = 0, txDone = 0
 zero a2
 ; if (DSS_rxCnt) {
 ldw *+b14(_DSS_rxCnt),b1
 nop 4
 [!b1] b rxErr ; process rx error
 ; *DSS_rxPtr++ = *DRR;
 [b1] mvkl DRR,a1 ; load address of serial port DRR
 [b1] mvkh DRR,a1
 [b1] ldw *a1,a1 ; read word from DRR
 ||[b1] ldw *+b14(_DSS_rxPtr),b1 ; load DSS_rxPtr
 [b1] ldw *+b14(_DSS_rxCnt),b2 ; load DSS_rxCnt
 nop 3
 stw a1,*b1++ ; store DRR at *DSS_rxPtr, auto
 ; increment DSS_rxPtr
 stw b1,*+b14(_DSS_rxPtr) ; store updated DSS_rxPtr
 ; DSS_rxCnt––;
 sub b2,1,b2 ; decrement DSS_rxCnt
 stw b2,*+b14(_DSS_rxCnt) ; store updated DSS_rxCnt
 ; if (DSS_rxCnt == 0) {
 ; rxDone = 1;
 ; }
 ; }
 [!b2] mvk 1,a2
checkTx:
 ; if (DSS_txCnt) {

 ldw *+b14(_DSS_txCnt),b1
 nop 4
 [!b1] b txErr ; process tx error
 ; *DXR = *DSS_txPtr++;
 [b1] ldw *+b14(_DSS_txPtr),b1 ; load DSS_txPtr
 [b1] ldw *+b14(_DSS_txCnt),b2 ; load DSS_txCnt
 nop 3
 ldw *b1++,a0 ; load word pointed to by DSS_txPtr
 ; autoincrement DSS_txPtr
 stw b1,*+b14(_DSS_txPtr) ; store updated DSS_txPtr
 mvkl DXR,a1 ; load address of serial port DXR
 mvkh DXR,a1
 ; DSS_txCnt––;
 sub b2,1,b2 ; decrement DSS_txCnt
 stw a0,*a1 ; write word to DXR
 stw b2,*+b14(_DSS_txCnt) ; store updated DSS_txCnt
 ; if (DSS_txCnt == 0) {
 ; txDone = 1;
 ; }
 ; }
 [!b2] or 2,a2,a2

(3)

(4)

(5)

SPRA598

19 An Audio Example Using DSP/BIOS

checkDn:
 ;if ((rxDone | txDone) == 0) {
 [a2] b Done ; if rxDone or txDone do Done processing
 stw a2,*+b14(rtxDone) ; store done flags into memory
 ; return; /* return from interrupt */
 ; }

 [!a2] ldw *++b15[2],b2 ; restore temp registers
 [!a2] ldw *++b15[2],b1
 [!a2] ldw *++b15[2],a2
 [!a2] ldw *++b15[2],a1
 b irp ; return from interrupt
 ldw *++b15[2],a0
 nop 4
Done:
 ldw *++b15[2],b2 ; restore temp registers
 ldw *++b15[2],b1
 ldw *++b15[2],a2
 ldw *++b15[2],a1
 ldw *++b15[2],a0
 nop 4
 HWI_enter C62_ABTEMPS, 0, 0xffff, 0
 ; if (rxDone) {
 ldw *+b14(rtxDone),b0 ; load done flags from memory
 nop 4
 and b0,1,b0 ; check if rxDone set
 [!b0] b txDone
 nop 3
 ; PIP_put(&DSS_rxPipe);
 [b0] mvkl _DSS_rxPipe,a4 ; load pipe address
 [b0] mvkh _DSS_rxPipe,a4
 PIP_put
 ; DSS_rxPrime();
 ; }
 b _DSS_rxPrime
 mvkl txDone,b3 ; set return pointer to come back here
 mvkh txDone,b3
 nop 3
txDone:
 ; if (txDone) {
 ldw *+b14(rtxDone),b0 ; load done flags from memory
 nop 4
 and b0,2,b0 ; check if txDone set
 [!b0] b allDone
 nop 3
 ; PIP_free(&DSS_txPipe);
 [b0] mvkl _DSS_txPipe,a4 ; load pipe address
 [b0] mvkh _DSS_txPipe,a4
 PIP_free
 ; DSS_txPrime();
 ; }
 b _DSS_txPrime
 mvkl allDone,b3 ; set return pointer to come back here

(6)

(7)

(8)

(9)

SPRA598

20 An Audio Example Using DSP/BIOS

 mvkh allDone,b3
 nop 3
allDone:
 HWI_exit C62_ABTEMPS, 0, 0xffff, 0

rxErr:
 ; dummy = *DRR;
 mvkl DRR,a1 ; load address of serial port DRR
 mvkh DRR,a1
 ldw *a1,a1 ; read word from DRR
 || ldw *+b14(_DSS_error),b1 ; load DSS_error value
 b checkTx ; start return to primary ISR code
 nop 3
 ; DSS_error |= 1;
 or b1,1,b1 ; DSS_error has now arrived
 stw b1,*+b14(_DSS_error) ; save new value of DSS_error
txErr:
 ; *DXR = 0;
 mvkl DXR,a1 ; load address of serial port DXR
 mvkh DXR,a1
 || zero b1
 stw b1,*a1 ; write to DXR
 ldw *+b14(_DSS_error),b1 ; load DSS_error value
 b checkDn ; start return to primary ISR code
 nop 3
 ; DSS_error |= 2;
 or b1,2,b1 ; DSS_error has now arrived
 stw b1,*+b14(_DSS_error) ; save new value of DSS_error
 .end

1. Since the ISR calls HWI and PIP assembly macros, hwi.h62 , pip.h62 and c62.h62 need
to be included. The HWI_Obj and PIP_Obj structures and the HWI and PIP module
macros are defined in these header files. These include files can be found in the
...\ti\c6000\bios\include directory of your product distribution. The order in which these
files are included is not important.

2. Set the addresses for the Multichannel Buffered Serial Port 0.

3. An ISR must save all the registers it uses. At the very beginning of _DSS_isr we save
only a subset of the total registers used by the ISR. This is done to optimize performance
and CPU consumption.

4. Every time the ISR is triggered, checkRead copies the 32 bit value from the Serial port
Data

Receive Register (DRR) to a word in a _DSS_rxPipe frame. _DSS_rxCnt (defined in dss.c)
keeps track of how many words are left to fill up the current _DSS_rxPipe frame.
_DSS_rxPtr (defined also in dss.c) points to the location in the current frame where the next
data sample from the serial port will be written. Every time the contents of DRR are copied to
the _DSS_rxPipe frame, _DSS_rxCnt is decreased by one and _DSS_rxPtr is increased by
one, to point to the next location in the frame. When the frame is full and ready to be put in
_DSS_rxPipe , _DSS_rxCnt becomes 0.

If _DSS_rxCnt was 0 when the ISR is triggered, there is no frame available to write the
received serial port data. This error condition is handled by readerror .

(10)

SPRA598

21 An Audio Example Using DSP/BIOS

5. Every time the ISR is triggered, checkWrite copies a word from a _DSS_txPipe to the 32
bit Serial port DataTransmit Register (DXR). _DSS_txCnt (defined in dss.c) keeps track
of how many words are left to be transmitted in the current frame. _DSS_txPtr (defined
also in dss.c) points the location in the frame from where the next data sample will be
copied to DXR. Every time a data sample is copied to DXR,

_DSS_txCnt is decreased by one and _DSS_txPtr is increased by one, to point to the next
location in the frame. When all the data in the frame has been transmitted, and the frame is
ready to be recycled back to _DSS_txPipe, _DSS_txCnt becomes 0.

If _DSS_txCnt was 0 when the ISR is triggered, there is no full frame available to write data
to the serial port data transmit register. This error condition is handled by writeError .

6. Check whether the last received data sample filled up a _DSS_rxPipe frame or whether
the last transmitted data sample emptied a _DSS_txPipe . If neither of these conditions is
met, we restore the registers and return from the ISR.

7. If a _DSS_rxPipe frame is full, the ISR needs to call the PIP_put assembly macro to put
the frame back to the pipe. Calling PIP_put may result in the audio function being posted.
The ISR will also call the C function _DSS_rxPrime to allocate the next empty frame from
_DSS_rxPipe (if available). In order to do this the ISR needs to:

• Save any registers that may be used by DSP/BIOS internally (since kernel macros will be
called).

• Save any registers that may be used by the compiler for the C function.

• Disable the scheduler, so that if a software signal is triggered as a result of a call to a kernel
macro, the signal does not start executing in the context of the ISR. Instead, the ISR should
finish first and then re-enable the scheduler so that the software signal can be executed.

To meet these requirements the ISR calls HWI_enter C62_ABTEMPS, 0, 0xffff, 0 .
HWI_enter is an assembly macro that disables the scheduler and saves all the registers
specified by the masks

8. We need to meet the preconditions before calling PIP_put : a4 should contain the address
of the pipe object (_DSS_rxPipe). There are no postconditions for PIP_put .

9. As with PIP_put , we need to meet PIP_free preconditions by loading the pipe object
address into a4. PIP_free does not have any postconditions.

10. At the end of the ISR HWI_exit is called to restore registers, re-enable the scheduler, and
exit the ISR

3.10 Using a C ISR

1. In the ...\ti\c6000\examples\bios\audio directory you will find a C version of the ISR in
the file dss_cisr.c . To use the C version of the ISR, remove the DSS_AISR.S62 file from
the project and add the DSS_CISR.C and DSS_ASM.S62 files.

2. Save the changes and rebuild audio.out.

3. Load audio.out . Run the application. Note how using the C ISR increases the CPU load
over the assembly version of the ISR.

SPRA598

22 An Audio Example Using DSP/BIOS

To use DSS_cisr as our ISR we need to write a small stub function in assembly that calls this
DSS_cisr . This assembly function is named _DSS_isr , as this is the function name entered in
the HWI_INT11 object (therefore, the function that is plugged in the TMS320C62x interrupt
vector table). The code for this function can be found in DSS_ASM.S62:
; ======== dss_asm.s62 ========
;
;
 .include c62.h62
 .include hwi.h62
 .global _DSS_isr
 .global _DSS_cisr
 .text
;
; ======== _DSS_isr ========
;
; Calls the C ISR code
;
_DSS_isr:
 HWI_enter C62_ABTEMPS, 0, 0xffff, 0
 b _DSS_cisr
 mvkl dssi,b3
 mvkh dssi,b3
 nop 3
dssi:
 HWI_exit C62_ABTEMPS, 0, 0xffff, 0
 .end

_DSS_isr needs to save all the registers that it uses. Therefore, it needs to use the
HWI_enter/HWI_exit macros to preserve all those registers that are not saved by the compiler. It also
needs to make sure that the scheduler is disabled, as DSS_cisr will call DSP/BIOS APIs that may post a
software interrupt.

3.11 Things to Try

• Increase the size of the frames in the pipes. Observe the System Log and note any changes
on the frequency at which the signal runs. What happens when we double the frame size?

• Change the frame size in the pipes to 512 words. Observe the changes in the CPU load.
Observe the System Log. When you increase the buffer size to 8 times the original value, the
PIP operations (PIP_alloc , PIP_put , PIP_get , PIP_free), and the posting of the audio
function occur at a frequency that is 8 times smaller. (You can check this by looking at the
System Log). However, this does not cause an equivalent reduction on the CPU load. This is
an indication that the PIP operations and the software interrupt scheduler have a small
overhead in the overall CPU load for this application. Servicing the ISR and copying the data
remain the largest overhead on the CPU.

• Enable the monitors on the signal side of the pipes. Observe the frequency at which frames
flow in and out of the pipes, and how it changes with frame size. Note the impact of the
monitors on the CPU.

• Enable a monitor for HWI_INT11 and observe its impact on the CPU. In general, you can
observe how enabling instrumentation (logging, accumulators, monitors) in the application
impacts the CPU load. Notice if there is a dependency with the frame size of the pipes.

SPRA598

23 An Audio Example Using DSP/BIOS

4 Summary/Conclusion

This audio example has demonstrated how to configure and use DSP/BIOS APIs for scheduling
data transfer between the hardware I/O peripherals and the target DSP. This example has been
provided to assist with your DSP application development and the understanding DSP/BIOS.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1999, Texas Instruments Incorporated

