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Abstract— This paper presents a wireless link and network
emulator, based upon the “Wireless IP” 4G system proposal
from Uppsala University and partners. In wireless fading down-
links (base to terminals) link-level frames are scheduled and
the transmission is adapted on a fast time scale. With fast
link adaptation and fast link level retransmission, the fading
properties of wireless links can to a large extent be counteracted
at the physical and link layers. A purpose of the emulator
is to investigate the resulting interaction with transport layer
protocols. The emulator is built on Internet technologies, and
is installed as a gateway between communicating hosts. The
paper gives an overview of the emulator design, and presents
preliminary experiments with three different TCP variants. The
results illustrate the functionality of the emulator by showing the
effect of changing link layer parameters on the different TCP
variants.

I. INTRODUCTION

The demand for higher capacity and wider coverage of
wireless network access is increasing. As the third generation
mobile systems is becoming commercialized, research on the
next generation systems, 4G, is becoming more intense.

One view in the industry is that 4G will not be a homo-
geneous technology as in earlier mobile systems, but rather
a mixed composition of different systems and technologies.
Perhaps a combination of 3G, WLAN, GPRS, and others, with
the common theme that they will provide a seamless service
to the user. The user should be connected to the most suitable
service, depending of current network coverage.

Even so, existing technologies are not expected to meet
the future demands in bandwidth capacity and coverage. New
systems need to be developed. As technology progresses,
new ways of transmission is being invented, or combined
with older technologies. For example, GSM, a second gen-
eration system, is using time multiplexing (TDMA) to allow
transmission to multiple users. In UMTS, a third generation
system, code multiplexing (CDMA) is used, allowing for
simultaneous transmission by the users without the need for
time multiplexing. Another evolving technology is orthogonal
frequency division multiplexing (OFDM), which uses multiple
carrier frequencies dedicated to a single data source. OFDM is
used for example in the recently released IEEE 802.11a WiFi
standard, which delivers up to 54 Mbit/s in the 5 Ghz band.

One 4G system proposal based on OFDM is developed
within the “Wireless IP” project [18] at Uppsala University,
in cooperation with Chalmers University of Technology and
Karlstad University. Our main focus is to cover wide areas
to service vehicular users, in excess of speeds of 100 km/h
with a 30-fold bandwidth increase compared to UMTS/3G.
To realize this goal, adaptive OFDM is used in combination
with channel prediction. Transmissions can then be scheduled
to maximize the total satisfaction of the users, depending on
their current channel quality. This is combined with channel
coding, increased cross layer interaction, link level ARQ, and
other mechanisms [17], [19].

Since the Wireless IP system is intended to carry Internet
traffic, it should be designed to provide a good service to
the network and transport layers. An important feature of
this system is that it is based on a fast feedback loop for
adapting the transmission and scheduling policy. Due to this
fast loop, fast link-level retransmissions, on a timescale of a
few milliseconds, become feasible. This is in marked contrast
to the large latencies of present 2G and 3G networks. It is
interesting to investigate how such a radically new design
would interact with higher-layer protocols.

There exists a number of network emulator projects. A
few examples are NIST Net [7], End-to-end Network Delay
Emulator (ENDE) [21], Ohio Network Emulator (ONE) [2],
Delayline [8], Dummynet [15], Seawind [9], and various trace-
based approaches [14], [13], [12]. Common for most of the
emulators is that they model the network with probabilities and
distributions for packet loss and delays. For our purposes, this
is abstraction is too coarse. For example, we want to see the
interaction of fast link layer retransmissions, in combination
with adaptive modulation (which gives a varying throughput
on a short time scale), and user scheduling in both time and
frequency. As we are also investigating issues with transport
protocols that do not require full reliability, or protocols that
can distinguish between error loss and congestion loss, we
want to be able to deliver bit errors on the link to the transport
layer.

To this end, a network emulator of the Wireless IP system
was constructed from scratch, with the purpose of investi-
gating the impact from different parameter settings on upper



layers. For example, how can maximum capacity be attained
depending on switching levels for adaptive modulation, what
target bit error rate should be used, or how many link level
retransmissions can be used before it negatively interacts with
the TCP retransmission timer?

The rest of the paper describes the design and construction
of the emulator. Furthermore, an overview of an experiment
environment is given which displays example experiment out-
put showing the impact of different link layer retransmission
limits on different TCP variants.

II. WIPEMU

Named “WIPEMU”, the emulator is intended to be plugged
into a real network environment as a gateway. This enables a
wide range of operating systems and TCP/IP implementations
to be tested, since the common interface is a regular ethernet
connection.

WIPEMU is implemented as a software module in
FreeBSD, and works by collecting packets on the incoming
interface of the gateway. These packets are treated as if they
were transmitted over a wireless link, and then the packets
are transmitted on the outgoing interface to the destination.
Together with the FreeBSD dummynet [15] system, the fixed
part of the network path can also be emulated. It is abstracted
into a packet loss ratio with a possible delay component. With
the use of dummynet pipes, different loss ratios and delays can
be combined to form complex network scenarios.
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Fig. 1. The WIPEMU core functionality

After packets have been received in the gateway, they are
placed in a queue of IP packets, see Figure 1. As packets
fill up the queue, WIPEMU dequeues one packet at a time
and decomposes it into link layer frames. In the specification
of the Wireless IP system, 1500 frames times 25 channels
are transmitted every second. These are destined to multiple
users, over a downlink with 5 Mhz radio bandwidth partitioned
into 200kHz channels. At present the emulator only handles
one channel á 1500 frames/s, but multi-channel capability and
scheduling between users will be implemented in the future.
Each frame consist of 120 symbols (108 symbols useful for
data) where each symbol is modulated according to multilevel
quadrature amplitude modulation (M-QAM). This modulation
can either be fixed (for example, always 4 bits per symbol),
or adaptive (transmit more bits per symbol when the channel
is good).

For every frame, predicted channel data is consulted to
decide the current signal-to-noise ratio (SNR). In the case of
adaptive modulation, this ratio controls which modulation level
to use. A high SNR enables higher modulation to be used, and
the reverse for low values of SNR. When the frame is then
“transmitted”, the non-predicted (i.e. “real”) channel is used
when calculating the probability that the frame is received with
symbol errors.

If the frame was transmitted without errors, it is stored
for later recomposition into its belonging IP packet, and the
next frame in the queue is transmitted. In the case of a
transmission error, a number of link layer retransmissions are
performed. Retransmission takes priority over transmission of
new data1. To achieve optimal use of the wireless channel, the
transmissions are pipelined. This means that frame reordering
can occur, which may lead to reordering on the transport layer.
If the frame is still in error after the maximum number of
allowed retransmissions, the symbol error rate is calculated
from the channel data, and bit errors are applied. These
errors will then be contained in the re-composed IP packet,
and their presence is often detected because the network or
transport layer checksum is invalid. This enables experiments
with protocols for loss differentiation (for example Checksum-
based Loss Differentiation [6] or TCP-HACK [3]), or semi-
reliable protocols (for example TCP-L [1] or UDP-Lite [10]),
or other protocols that are able to handle packets with bit
errors.

The consulted channel data is an array of sample values, at
present one per frame, indicating the received channel power.
This power experiences variations in strength, or “fading”, for
vehicular users. This channel can be obtained in a number
of ways. One way is to use channel sounding to get the
measurements from a real environment. Another way is to
use ray-tracing models, for example [4]. A third way is to use
accepted mathematical models to simulate the channel, such
as Rayleigh or Jakes fading models. These models produce
the fast (short-term) fading characteristics. There may also be
shadow fading (also known as slow fading) involved, which
can be modelled by an additive slowly varying contribution to
the received power, on the dB-scale. Shadow fading is often
modelled as an AR(1) process with prescribed variance. For
the experiments in this paper we use a Jakes model with added
shadow fading (this is further described in the next section).

III. EXPERIMENT OVERVIEW

A scenario was created where a mobile user is downloading
content from a server, to illustrate how the emulator is used.
The mobile user has a wireless connection to a base station,
which in turn is connected to the rest of the Internet, which
also connects the server. This scenario is shown in Figure 2.
It should be noted that as the emulator currently handles only

1In the present implementation, the frame is retransmitted and received
separately, without using soft recombining with the previously received
incorrect frame.



one channel the scenario is limited to one user in the cell
with link adaptation and without scheduling (one channel is
allocated all the time to the single user).

Server Internet Base station Mobile user

WAN

Fig. 2. Logical experiment setup.

The experiment setup to implement this scenario consists
of three networked computers [20], as shown in Figure 3. The
first is acting as a sender or content provider, the second is
running the WIPEMU emulator, and the third is acting as a
receiver and consumes data from the sender. All computers are
also connected to an administrative network. This is used to
control the experiments, so that packet capture in the emulated
network is not affected by non experiment related packets.
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Fig. 3. Physical experiment setup.

As mentioned, the experiment consists of transmitting bulk
data from the sender to the receiver (see Table I for a compi-
lation of the relevant parameters). Meanwhile, all transmitted
and received packets are collected at both end-points for later
analysis. Between each transmission, parameters of the system
can be changed. For example, different wireless channel data
can be used, different number of link layer retransmissions,
different modulation schemes, enabling or disabling certain
TCP options, and so on. By choosing an appropriate set of
parameters, many aspects of how the Wireless IP system
interacts with upper layers can be examined.

For the illustrative experiments presented in this paper we
have focused on examining the performance of three different
TCP variants, with a varying degree of link reliability. The
three variants are regular TCP, TCP-L [1] and TCP Westwood+
[11]. The reasons for these choices are that regular TCP
should naturally be studied because it is the dominant transport
protocol on the Internet today. TCP-L is an experimental
protocol developed at Karlstad university (thus a local interest
of including the protocol), and is used to illustrate the effect
of allowing bit errors to propagate from the transport layer.

TCP Westwood+ is a promising approach to improve upon
the bandwidth estimation algorithm in TCP, that should also
provide better resiliency to the non-congestion related packet
loss in wireless networks.

The end hosts are running the Linux 2.4 kernel in standard
configuration, except for the disabling of timestamps to give
comparable results with TCP-L (which does not support the
timestamp option). This TCP incorporates many of the sug-
gested features in the research community, such as slow start
and congestion avoidance, fast retransmit, fast recovery, times-
tamps, SACK, FACK, D-SACK, fine grained network timers,
undoing window adjustments, and rate-halving [16]. As Linux
is a widely installed operating system on Internet servers, we
believe the standard configuration can be representative for
TCPs currently deployed.

TCP-L is a receiver-side modification of TCP that enables
the receiving application to make a tradeoff between correct
data and performance (mainly higher throughput). Thus, the
application must be able to tolerate errors in the data stream
to some extent. By accepting and acknowledging packets with
bit errors, better performance can be obtained because the
TCP congestion control is not invoked as often as if erroneous
packets were discarded (as in standard TCP). Retransmissions
of erroneous packets is also avoided, presumably leading
to less jitter and a more fluent stream of packets, as well
as better utilization of radio resources since it is used for
retransmissions to a lower extent. As errors may occur both
in the header and the payload, TCP-L tries to recover the
header. However, when recovery fails, the packet is discarded
and treated as a packet loss.

TCP Westwood+ changes the bandwidth estimation algo-
rithm to be more resilient to non-congestion related packet
losses. In regular TCP, bandwidth is probed and transmission
is increased in response to incoming acknowledgements, and
reduced in response to packet loss. In Westwood+, the rate
of the incoming acknowledgements is used to calculate a
bandwidth estimation. This estimate is then used to provide
a more adaptive window reduction in case of packet loss or
timeouts.

For the fixed part of the network, there is a set round-
trip delay of 20 ms. In addition, delays are introduced by
packet queuing in the gateway (limited to 50 packets), and
the transmission delay in the wireless link layer. These last
two delays will vary, because of the queue building up, and
the delay in the link layer depends both on retransmissions
and varying modulation levels. Delays due to hand-over have
not been introduced. The link level retransmission delay was
set to 2 ms, which is due to the tight feedback loop in
the system proposal. These delays are interesting to study in
relation to the delays introduced by the fixed network and
queueing. For example, TCP keeps an estimate of the round
trip time to detect packet losses. If the modulation level drops
or many retransmissions are needed, this may interfere with the
TCP retransmission timer and lead to unnecessary congestion



avoidance.

For the wireless channel, the receiver and transmitter are
assumed to have single antennas. Data was obtained from
a Jakes model with 12 taps set according to typical urban
fading. To account for shadow fading, an AR(1) process
provided shadow samples at an interval of 2 meter. The
standard deviation, σ, was set to 4 dB and the pole, a, at
0.74. A copy of this channel was then processed to include
prediction errors, thus resulting in a “real” channel and a
predicted channel. The predicted channel is used to choose
the modulation scheme for each frame. When the frame is
later “transmitted” in WIPEMU, the “real” channel is used
when applying errors. The predictor operated with a 100 km/h
target velocity, to see the impact of high prediction errors. The
normalized power prediction mean square error (NMSE) is 0.1,
which is appropriate for predictions of the short term fading
2 ms ahead at 1900 Mhz carriers for terminals moving at 100
km/h [5].

The experiments compare the three different TCP variants
against a varying number of link layer retransmission limits.
Note that the results may not be directly comparable, as TCP
and TCP Westwood+ provide a reliable service, and TCP-
L does not provide full reliability as errors are delivered to
the application layer. With a low retransmission limit, many
packets will be erroneous. For example, if we only allow
one link layer frame retransmission, and the channel quality
is predicted badly, there is a high probability that the link
layer frame will be damaged, and thus the TCP packet will be
damaged. If more retransmissions are allowed, the probability
increases that the frame will be transmitted correctly. This
however adds more delay to the transmission of the TCP
packet, which may interfere with the TCP retransmission
timer. If TCP experiences a timeout, it assumes that the
network is congested, and tries to probe for the available
bandwidth from scratch. Presumably, as TCP-L will allow
erroneous packets to be delivered, and as TCP Westwood+
keeps a separate estimate of the available bandwidth, these
are expected to perform better than regular TCP when packet
loss is high.

IV. RESULTS

Two main performance metrics were extracted from the
experiments, the throughput and the number of TCP packet
retransmissions. The experiments were repeated 30 times with
different fading environments and the figures show the mean
values of the repetitions and the 95% confidence intervals.
Figure 4 shows the obtained throughput versus the maximum
number of allowed link layer retransmissions. The different
curves in the figure correspond to the different TCP variants
tested, as explained by the legends in the figure. Starting from
the right, where many link layer retransmissions are allowed,
all three transport protocols perform well. As the retransmis-
sions become more limited, more and more TCP packets will
become erroneous. These packets will be discarded by TCP
and TCP Westwood+, and treated as packet loss events. This

Fixed network
Fixed network delay (RTT) 20 ms
Network queue size 50 packets
Wireless Downlink
Frame transmission delay 0.667 ms
Channel model 12-tap Jakes typical urban fading model

@ 100 km/h, 16dB SNR + AR(1) shadow
fading with variance 4 dB and pole at 0.74

Modulation Adaptive 4-256 QAM with switching
adjusted to a prediction error of NMSE 0.1

Frame size 108 symbols
Coding Uncoded M-QAM used
Scheduling None, one-user scenario
Link ARQ 10, 9, ..., 3 retransmissions
Wireless uplink
Channel model imposed bandwidth limit and delay
Packet loss 0% (lowest modulation level assumed)
Capacity 20 kbit/s
Delay 2 ms
Transport protocols
Variants TCP, TCP-L, TCP Westwood+
Transferred data 4 Mb bulk data
TCP settings Standard, except for disabled timestamp
MTU 576 bytes
Retentive TCP caching Cleared before new connections

TABLE I
EXPERIMENT PARAMETERS

leads to invocation of congestion control, and therefore the
transmission rate is reduced. TCP-L, which tries to deliver
the erroneous packets anyway, does not experience loss to
the same degree as TCP and TCP Westwood+. However, a
slight reduction in throughput is seen anyway, since not all
damaged packets can be recovered. Comparing TCP and TCP
Westwood+, the latter shows a small improvement over TCP
when there is a maximum of three link layer retransmissions.
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Fig. 4. Throughput as a function of the maximum number of link layer
retransmissions

The other metric, the number of TCP retransmissions,
is shown in Figure 5. As expected, when many link layer
retransmissions are allowed, not many TCP retransmissions
are needed. As more errors are introduced at the link layer, the



number of transport layer retransmissions increases. TCP and
TCP Westwood+ display the same amount of retransmissions,
while TCP-L shows a lower number of retransmissions. As
explained earlier, damaged packets are accepted instead of
being treated as packet loss, leading to fewer transport layer
retransmissions.
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V. CONCLUSIONS

This paper presented the WIPEMU network emulator. The
emulator is intended to be used to evaluate the impact of design
decisions of the 4G system proposal from the Wireless IP
project at Uppsala University. WIPEMU handles the wireless
parts of the network path, while the fixed parts can be emulated
with the dummynet functionality in FreeBSD. The emulator
is constructed based upon the downlink proposal in [17]. The
key components are link layer framing, adaptive modulation,
fast link layer retransmissions, and delivery of damaged frames
to the network layer. The usability of the emulator has been
shown with an illustrative experiment, showing the throughput
performance of three different TCP variants over a link layer
with variable reliability.
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